POOMA

A C++ Toolkit for High-Performance
Parallel Scientific Computing

Jeffrey D. Oldham
CodeSourcery, LLC

POOMA: A C++ Toolkit for High-Performance Parallel Scientific Computing
by Jeffrey D. Oldham

Copyright © 2002 by CodeSourcery, LLGHtp://www.codesourcery.com/)

All rights reserved. This document may not be redistributed in any form without the express permission of the author.

Revision History

Revision 1.01 2002 Mar 01 Revised by: jdo

Added UML class diagrams, revised compilation directions, and added a description of the source code
Revision 1.00 2002 Jan 31 Revised by: jdo

First publication.

http://www.codesourcery.com/

Table of Contents

PIEIACE.. .o b e IX
1. HOow to Read ThiS BOQK..........ceiiieeiisieri et X

2. Obtaining, Using, and Modifying POOMA...........cccooiiiirireeee e Xii

3. HisStory Of POOMAL.......ce ettt nne s Xiii

4. ACKNOWIEAGEMENLS. ...t Xiv

1. Getting Started With POOMA ..o 16
1.1. Getting Started for Impatient USELS.........ccocoverinereneneneresesesese e 16

1.2. ObtaiNiNg POOMAL ...ttt nnes 17

1.3. Compiling the POOMA Library........cccoeeveiieie e 17
1.3.1. DANGER: Configuration OptiOnS........c.ccoererereneneseseseseesesiene 19

1.4. Writing and Compiling POOMA Programs..........c.ccoeeeerenenenenenesennenns 23
1.4.1. DANGERInitialize andfinalize ..o 25

1.5. Supporting Distributed COMPULALION........ccceeeieriieiieee e 26
1.5.1. Obtaining and Installing the MM Shared Memory Library........... 27

1.5.2. Obtaining and Installing the Cheetah Messaging Lihrary........... 28

1.5.3. Configuring POOMA When Using Cheetah.........ccccccoocvnieiinenen. 30

2. INTFOTUCTION ..ttt sb e aeenae e 31
2 I = @ 1@ 1 AN €T - L 31

2.2. POOMA is OpeN-S0oUrce SOMWALE.........ccoeierererie e 35

3. ATutorial INtrOAUCTION ...t s 37
3.1. Hand-Coded Implementation...........cccccceieeieseeiee e 39

3.2. Element-wis@\rray Implementation............ccoeoreenneenneinseessees 42

3.3. Data-Parallefrray Implementation...........cccoeeeeveenreeneneiensee e 46

3.4. StencilArray Implementation.........cccoceveveeierinineeeese s 50

3.5. DistributedArray Implementation...........ccccceverreneienieneresenee e 54

3.6. Data-ParalldField Implementation.............cccceeeeeivvreecienissseeeeen, 63

3.7. DistributedField Implementation............cccceerevvnssseseseeeeee s 68

4. Overview of POOMA CONCEPLS......ccciiiieiiecireeiteesieeseesteesiee s ssre e sreesseesse e e sneas 73
4.1. POOMA CONEAINELScitiriiriirieriisiesiesie ettt ssesns 74
4.1.1. ChooSING & CONTAINET........ccciriririireriesie et 75

4.1.2. Declaring Sequential CoNtaiNerS..........ccceevereererieerenienesree e 76

4.1.3. Declaring Distributed Containers..........ccccoceeeveeviesieeieesee e 78

4.2. Computation MOUES.......cceiieieiieiece sttt 79
4.3. Computation ENVIFONMENL ..o 80

ST A = |V O o] o1 = 11 1= SRR 82
R I O] o1 = 1] 1 1= £ J TSROSO 82

ST N § =\ TSRS 82

5.3. DOMAIN St 83
5.3.1. DeclarinddOMaIN S..........cccceieiiieeereeeeeeee e 85
5.3.1.1.L0C Suutiiiiiciee e 86
5.3.2.20nterval Se 88
5.3.1.3.RANGES......ceciciiiirrcee s 90

5.3.1.AGHA S 92

5.3.2. USINGDOMAIN S......cueiiieiiretieetee ettt nns 95

5.4. DECIANNGAITAY S..ooeiiiieiisieiee ettt seens 96
5.5. USINGAITAY S..ooviiiiiiiririiteieietsesesisisie ettt 104
5.6. DYNAMICAITAY Sttt 110

L = o 11 =S PR 116
0 N o T= T o (o =T o OSSN 116

6.2. TYPES OFENQINEG S..ooiiieeeeeceeee e 117

7. Data-Parallel EXPreSSIONS.........ccciiiieiieiiecie et see et sneas 121
7.1. Expressions with More Than One Container Value............ccccceeveeveenne 121

7.2. Using Data-Parallel EXPresSSIiOnS.. ... 121

7.3. Implementation of Data-Parallel Statements..........c.ccoccevveverenienceeenne 133
7.3.1. Naive Implementation..........cccocoveieeiee e 134

7.3.2. Portable Expression Template ENging.........cccocveceeveesensiienninns 135

8. CONLAINET VIBWS.....eeii ittt e ettt e et e e s sttt e s s et e s s s aaeeeessasaeeesssrenessasreeesans 143
A. DANGER: Programming with Templatesccccooiiiirineniennneneeeeeseeie 144
A.1l. Templates Execute at Compile-TimMe.......ccceveiieiiiesie e 144
A.2. Template Programming for POOMA USEIS........cccceceveeveseesesieese e 145
A.3. Template Programming Used to Write POOMA........ccccccooeiivrieerrreennn. 150

B. DANGER: Overview of POOMA SOUICES.........cceoererrirreeiesieenieseesiesseeseessenses 158
B.1. Structure of the FileS.......oooie e 158

B.2. POOMA Coding CONVENTIONS.......ccciieieriieienieeiesteesiesreesiesreesseseessesee e 164
B.2.1. POOMA NaMESPACE......cceeiririeeeerieerisieesre e sre e 164

= P2 o T 44T 1] o ST 164

B.2.3. PrepPrOCESSAL.....cccvii ittt 164

B.2.3.1. COMMENTS.....ooiiiiiieieeee e e e 165

B.2.3.2. Preprocessor SymbalS........ccoccoerereninienenineseseseseeee 165

B.2.3.3. Preprocessor MaCrOS.......cccooeereereeriieenieesee e 165

B.2.4. Global Variables............cc e 165

B.2.5. ClASSESiiiiiiiirie et 166

= T2 G W] o (o] S 167

o P R e 1= o £ ST 168

B.2.8. Compile-Time Programming..........ccccceeceeverieeresieeseesseessesseeseennens 168

B.2.9. CONSLANLS....cuiiiiiiiecee et 168

B.2.10. TYPE CaASHNG....ciiiieiieeiiecie e sie et se et sre e s e e ne e 168

B.2.11. Errors and EXCEPLIONS.......cccoviviiieiieiie et 168

C. UML ClaSS DIagramsS........ccceririerieriinierienisesiesie sttt ssesneas 169
CLLLATTAY Sttt 170
C.2.Field s,Meshes, andCentering S.....ccccccecvvvvrrnenenereneeeeeeens 173
C.2.1.MESNES....c.oieeee e 175

O O =T o1 (=] 1T ST 178
C.3.Vector s, TinyMatrix S, TENSOI S....ccccocvvvviviririeeseeeeeeeeeeens 179
(@B Lo 4 0 =11 o ISR 185
C.5.ENQINE Sttt 186
C.6. Distributed COMPULALIAN..........cceieeieriere e eeens 190

(€1 [0 1S 1T= T USRS URURURORN 202

List of Tables

1-1. Configuration OPLIONS.......cciueiieiieeiie et esa e nreesreeenns 19
4-1. POOMA CONCEPLS...ciiiuiieiiiiiriieesieeesireesteessiseessre e ssseesbe e sssessseeesssessseessssesssenss 73
4-2. POOMA CONtaINETr SUMMAIY.c.eiiieieieierienieseeseessessessessessessessessessessessessessessens 74
4-3. Choosing @ POOMA CONLAINEL.........ccevieiieeeieecie et 76
5-1. Declaring One-DimensionBIOC S ... 86
5-2. Declaring MultidimensiondLOC Scccccceceverice e 87
5-3. Declaring One-Dimensionfiterval S 88
5-4. Declaring Multidimensiondhterval — S......ccccooiieciiiiccecceeea 89
5-5. Declaring One-DimensioNBANQJES.........ccoeiieeeiiieiesiseee e 90
5-6. Declaring MultidimensiondRANGESccoeirerrireiseees s 91
5-7. Declaring One-Dimension@rid S.........ccccoceeeeeesisccseseseee s 93
5-8. Declaring MultidimensiondBrid S..........cccccccciiiieiiicccceeece e 94
5-9. SOMEDOMAIN ACCESSOIS....c.cvieereretiiiesestetesesesesessssssesesesssssssassesesesesssssssesesens 95
5-10. DECIANNGAITAY S...oouiieeieieiieisie ettt se et se e e neseenes 99
5-11. Initializing Array S’ DOMAINS.....c.corueuiririeiririeirieresesie e 102
5-12.Array Internal Type Definitions and Compile-Time Constants................ 107
B5-13.AITAY ACCESSOIS....uiiicuiiiiierisiesiesesieeesestesestesseesseseesessesaesessesessesseseesessesessessns 108
5-14. Changing ®ynamiCArray 's DOMaiN.......cccocoeereveerireiesiseeeeesesesessesesenas 111
B-1. TYPES OTENQINE Seoviiieecce e 117
7-1. Operators Permissible for Data-Parallel EXpressions...........ccoccevevvveenenene 125
7-2. Mathematical Functions Permissible for Data-Parallel Expressians.......... 126
7-3. Comparison Functions Permissible for Data-Parallel Expressions............ 131
7-4. Miscellaneous Functions Permissible for Data-Parallel Expressions........ 133
A-1. Correspondences Between Run-Time and Compile-Time Constructs......147
A-2. More Correspondences Between Run-Time and Compile-Time ConstrudgiSO
B-1. Toolkit Directories and FileS..........couiiriiirinenise e 159
B-2. Source Code Directories (WIthHTC) ... 160
B-3. FIlename SUTIXES.......cooiiieiieieere e 162
(O I o] o] (3= (o] 1= USSR 190

List of Figures

2-1. How POOMA Fits Into the Scientific ProCess.......ccocovvvevenieneneseeeseene 32
3-1.D0O0F20 AVEIAGINGS....coceivetiecteteceetee ettt ettt st se e tesesnenes 37
K Yo [0 [T g o VN 1 =\ SRS 49
3-3. Applying @ SteNCil t0 @AITAY ceveieeeeieeer e 53

Vi

3-4. The POOMA Distributed Computation Model...........ccccovvevenieneeceseeceeeene, 60

4-1. Concepts For Declaring CONtAINELS.ooiiirirereresiese e 76
4-2.Array andField Mathematical and Computational Concepts................ 77
7-1. AddingArray s with Different DOmMainS.........ccoceovverneveieneneeseneee e 122
7-2. Annotated Parse Tree fol + 2*B ... 135
C-1. Explanation of UML Class Diagrams..........ccccererererenineneseseseseseseseneens 169
C-2. Relationship Betweefirray andDynamiCAITaY S.....ccoovvereveeeennnnns 171
ORI N g = |V D 1T Vo | - oo OSSR 171
C-4.DYyNamiCAIray Diagrami........cccceieiirieisiseerereenesesiseeseesesssesssseseseessssssesesenes 172
(@S T =1 [0 TR 174
6. IMESNES ...ttt ettt ais 176
C-T.NOMESI......o e 176
C-8.UniformRectilinearMesh . 177
C-9. CenteriNg CIAaSSES.cciiiririeriesesie sttt nne s 178
(@ K0 I o o (TS 179
C-1L.TINYMALIX Siucveeiieiiiieeieteeeeee ettt benas 180
C-12.TinyMatrixEngine Sttt ettt ettt b ettt eeea ettt e et netens 181
C-13.Tensor s andTeNSOrENQGINEG S....cccooeiiirrrrrrreeeeeeee s 182
C-14.Full andDiagonal TensorEngine Sttt ettt ettt nenan 183
C-15.Antisymmetric andSymmetric TensorEngine s.....cccoeueee. 184
(@G TH T 4 =1 1= 186
(@ g o T 187
C-18.Brick andCompressibleBrick Engine S ettt 187
C-19.Dynamic andMultiPatch Engine S ettt 188
C-20.REMOLE ENQINE S.ooiceccecee et 189
(@ I - 1 11 0] o S 191
(O €] [0 Il o= U 1110 o 3SR 192
C-23. Other PArtitiONS.......ccoiiviiiiie ettt st st 193
C-24. GUANT LAYELS.....eeceecveeeecteeteeteestesee st eeesre e se e s teeaesaeetesaaestesneesteeneesneennens 194
C-25.DOMAINLAYOUL ..ot 195
C-26.DYNamMICLAYOUL ...ttt 195
C-27.GHALAYOUL ettt 196
C-28.UniformGridLayOuUl ..o 197
C-29.SparseTileLayOut ..o 198
C-30. Relationships Among Context MappEerS.........cccvererererenenenese e 199
(O I O] 01 (= Y F= T o] 01T 3SR 200

Vii

List of Examples

1-1.
3-1.
3-2.
3-3.
3-4.
3-5.
3-6.
3-7.
5-1.
5-2.
5-3.
A-1.
A-2.

A “Hello, POOMA” PrOgraml.......ccccciieiieiiieeieesiee s ssieesseesessseessesssnssssesssesssessnns 23
Hand-Coded Implementation DI0Of2d ..o 39
Element-wisérray Implementation 0D00f2d ..., 43
Data-ParallefArray Implementation 0D00f2d ..o 46
StencilArray Implementation 0D00f2dccooeiiiii 50
Distributed Stencifrray Implementation oD0o0of2d ..o, 55
Data-ParalleField Implementation oD00f2d ..o 64
Distributed Data-Parall®lield Implementation oDoof2d 68
(@70])Y/ (00T 1 = |V TSRS 105
UsingArray Member FUNCHONS. ... 109
Example USinDYNamICAITAY S....covrerrieerereseeieesseeieesese e 113
Classes Storing Pairs of Values..........ccooeieeiiiieiiieeceeee e 146
Templated Class Storing Pairs of Values.........ccccccevvviv e 146

viii

Preface

The POOMA Toolkit enables scientists and engineers to quickly translate scientific algo-
rithms into efficient programs. The toolkit’s containers facilitate storing and computing
arrays of values by supporting element-wise, data-parallel, and stencil-based computa-
tions. The toolkit automatically handles all interprocessor communication so the same
POOMA program can efficiently execute on a uniprocessor workstation or a supercom-
puter with thousands of processors. Thus, its creator can concentrate on the algorithms
rather than their implementation details.

POOMA programs are written in C++. Scientists and engineers can use their existing
knowledge of C++ and need only learn a few POOMA concepts rather than having to
learn a whole new language. The easy-to-use POOMA interface hides sophisticated C++
code. For example, a POOMA programmer can use a simple data-parallel statements
such as

double x; vector<1> v1(10000), v2(10000), v3(10000);
X = sum(vl * sin(v2) - exp(v3));

and expect them to run efficiently without ever being aware of the underlying state-of-
the-art expression template technology.

This book is aimed at scientists and engineers who want to quickly translate scientific
algorithms into efficient programs running on one or thousands of processors. Although
we will outline some scientific algorithms, no scientific background is required. Readers
will need to be familiar with C++, the language in which POOMA programs are writ-
ten. Classes, objects, function objects, template classes, and template functions will all
be used. Appendix Appendix A contains a short introduction to template programming.
Readers needing more background material might want to read Koenig andAoels

erated C++ Stanley Lippman’<C++ Primer, Bjarne Stroustrup’§he C++ Program-

ming Languaggeor the first half of Barton and Nackmar®cientific and Engineering
C++.

Readers of this book will learn how to use the POOMA Toolkit to implement scien-
tific algorithms. Since POOMA offers classes and functions corresponding to common
scientific concepts, POOMA users will

- spend significantly less time programming,

- write programs that are typically one-tenth the length of comparable C and Fortran

Preface
programs,
« require much less time to debug programs, and

- will be able to port their programs to a wide variety of platforms without changing
them.
Those wishing to learn how to write parallel or distributed programs will learn the fun-
damental concepts and see how easy it is to write the programs. Readers interested in
advanced C++ techniques will see how these techniques, theoretically presented else-
where, are actually used in practice. We hope all our readers will be intrigued by the
power of POOMA'’s technology they will peek under the hood to see how the toolkit
uses C++’s features.

1. How to Read This Book

Each chapter of this book introduces a new concept, using it to convert an algorithm
into a program. It continues by describing the concept’s interface, illustrating these with
code fragments or short programs, and concludes with a detailed listing of the classes,
functions, member functions, etc. All too frequently in C++, two concepts are interre-
lated so describing one also requires describing the other. Thus, these detailed listings
may refer to material presented in future chapters.

A few sections marked with “dangerous bend” signs contain advanced material not nec-
essary to understand when initially learning POOMA. | recommend skipping these sec-
tions on your first reading of this book.

One need not read every chapter to write sophisticated POOMA programs. Here is a
brief sketch of what is in the remaining chapters and appendices:

Getting Started with POOMA

describes how to download and compile the POOMA Toolkit. It then presents a
“Hello, POOMA” program, explaining how to compile and run it. Impatient readers
who already have a working POOMA Toolkit may wish to skip this chapter.

Array Containers

implement the concept of a mathematical array which is a map from indices in a
domain to values. This container is the most fundamental POOMA type. We explain
how to create and use these maps. All subsequent chapters depend on understanding
Array s.

Preface
Vector s, TinyMatrix s, andTensor s

are three classes implementing the corresponding mathematical concepts. If your
algorithm uses these mathematical concepts, read this chapter.

Data-Parallel Expressions

operate on multiple values. Many scientific algorithms use these concepts so all
POOMA containers support them. For example, values inAm@y sa andb

can be added element-wise using an expression as simgel@asomitting the

need for any indexing or loops. A dangerous-bend section describes the underlying
PETE technology making this possible.

Domains

specify containers’ sets of permitted indices. They are used when creating new
containers and taking views of existing containers.

Container Views

are themselves containers having domains that are subsets of other containers’ do-
mains. Combining them with data-parallel programs yields POOMA’s powerful
notation to implement algorithms.

Engine s

store and compute data for containers. If containers are like cars, engines are the
things that make them go. Most POOMA users need not look under the hood at
Engine s, but those interested in optimizing their use of POOMA or seeing one
of the fundamental POOMA concepts will be interested.

Distributed Computation

involves distributing a program’s data and computation among all available proces-
sors, ranging in number from one to thousands. We present the POOMA concepts of
partitioning and distributing data while relying on the toolkit and a communication
library to automatically move all data among processors. We show that converting
a sequential program into a distributed program can be as easy as adding three lines
of code.

Field Containers

extend the concept of dhrray to three-dimensional space. This is the most pow-
erful POOMA abstraction. Multiple values can be treated as residing at the same
location, and relations support lazy evaluation, where one field’s values can be au-
tomatically updated whenever another field’s values change.

Xi

Preface
Appendix: Template Programming

describes using C++ templates in POOMA programs. C++ programmers with little
experience in using templates will want to read this appendix before reading about
Array s. A dangerous-bend section will interest C++ programmers desiring an
overview of all the template programming ideas used to implement POOMA.

2. Obtaining, Using, and Modifying POOMA

The POOMA Toolkit is open-source software. Anyone may download, read, redistribute,
or modify the POOMA source code. Here we briefly describe how to download, con-
figure, and compile the POOMA Toolkit for UNIX operating systems. Instructions for
Microsoft Windows and Mac users as well as more details appear in the subsequent
chapter. Those wanting to run distributed POOMA programs should also read the sub-
sequent chapter.

Obtain the POOMA source cogeoma-2.3.0.tgz from the POOMA download page
(http://pooma.codesourcery.com/pooma/download) available off the POOMA
home pageHttp://www.codesourcery.com/pooma/pooma/). The “tgz” indicates
this is a compressed tar archive file. To extract the source filestarsexzvf
pooma-2.3.0.tgz . Move into the source code directosyoma-2.3.0 directory;
e.g.,cd pooma-2.3.0

Configuring the source code determines the file and program names needed for compila-
tion. First, determine a configuration file in thenfig/arch/ directory corresponding

to your operating system and compiler. For exampl&UXgcc . conf supports com-

piling under a Linux operating system with g++, wh#8I64KCC. conf supports com-

piling under a 64-bit SGI Irix operating system with KCC. Next, configure the source
code:

Jconfigure --arch LINUXgcc --opt --suite LINUXgcc-opt

. The architecture argument to thearch option is the name of the corresponding
configuration file, omitting its conf suffix. The--opt indicates the POOMA Toolkit

will contain optimized source code, which makes the code run more quickly but may
impede debugging. Alternatively, use thelebug option which supports debugging.
The suite namecan be any arbitrary string. We chasBNUXgcc-opt to remind us

of the architecture and optimization choie@nfigure creates subdirectories named

Xii

http://pooma.codesourcery.com/pooma/download
http://www.codesourcery.com/pooma/pooma/

Preface

“LINUXgcc-opt” for use when compiling the source files. Comments at the beginning
of 1ib/suiteName /PoomaConfiguration.h record the configuration arguments.

To compile the source code, set ROOMASUITEenvironment variable to the suite
name and then typmake. To set the environment variable for the bash shell use

export POOMASUITE=suiteName
substituting the suite namessiiteName . For the csh shell, use
setenv POOMASUITE LINUXgcc-opt

Issuing themake command compiles the POOMA source code files to create the
POOMA library. The POOMA makefiles assume the GNU™ Make is available so sub-
stitute the proper command to run GNU™ Make if necessary. The POOMA library can
be found in, e.g.1ib/LINUXgcc-opt/libpooma-gcc.a.

Anyone may modify the POOMA source code. If an application requires a special-
ized container not already available, any programmer may add it. Any programmer can
extend it to solve problems in previously unsupported domains. Companies using the
toolkit can read the source code to ensure it has no security holes. It may be down-
loaded at no cost and used for perpetuity. There are no annual licenses and no on-going
costs. Users are guaranteed the software will never disappear. In summary, the POOMA
Toolkit is low-risk software.

3. History of POOMA

The POOMA Toolkit was developed at Los Alamos National Laboratory to assist nu-
clear fusion and fission research. In 1994, the toolkit grew out of the Object-Oriented
Particle Simulation Class Library developed for particle-in-cell simulations. The goals
of the Framework, as it was called at the time, were driven by the Numerical Tokamak’s
“Parallel Platform Paradox”:

The average time required to implement a moderate-sized application on a parallel computer
architecture is equivalent to the half-life of the latest parallel supercomputer.

The framework’s goal of being able to quickly write efficient scientific code that could
be run on a wide variety of platforms remains unchanged today. Development, mainly at
the Advanced Computing Laboratory at Los Alamos, proceeded rapidly. A matrix solver

Xiii

Preface

application was written using the framework. Support for hydrodynamics, Monte Carlo
simulations, and molecular dynamics modeling soon followed.

By 1998, POOMA was part of the U.S. Department of Energy’s Accelerated Strate-
gic Computing Initiative (ASCI). The Comprehensive Test Ban Treaty forbid nuclear
weapons testing so they were instead simulated using computers. ASCI’s goal was to
radically advance the state of the art in high-performance computing and numerical sim-
ulations so the nuclear weapon simulations could use 100-teraflop parallel computers.
A linear accelerator code linac and a Monte Carlo neutron transport code MC++ were
among the codes written.

POOMA 2 involved a new conceptual framework and a complete rewriting of the source
code to improve performance. TWgray class was introduced with its use lah-

gine s, separating container use from container storage. A new asynchronous sched-
uler permitted out-of-order execution to improve cache coherency. Incorporating the
Portable Expression Template Engine (PETE) permitted faster loop execution. Soon,
container views an€onstantFunction andIndexFunction Engine s

were added. Release 2.1.0 includeéeld s with their spatial extent an@ynami-

CArray s with the ability to dynamically change domain size. Support for particles
and their interaction witlFrield s were added. The POOMA messaging implementa-
tion was revised in release 2.3.0. Use of the Cheetah Library separated POOMA from
the actual messaging library used, and support for applications running on clusters of
computers was added. CodeSourcery, Lh€tp: //www.codesourcery.com/), and
Proximation, LLC fttp://www.proximation.com/), took over POOMA develop-
ment from Los Alamos National Laboratory. During the past two yearsFibéd
abstraction and implementation was improved to increase its flexibility, add support for
multiple values and materials in the same cell, and permit lazy evaluation. Simultane-
ously, the execution speed of the inner loops was greatly increased.

4. Acknowledgements

This book would not have been completed without the help and encouragement of a lot
of people and organizations. Los Alamos National Laboratory funded the writing of this
manual and the development of the POOMA Toolkit. John Reynders conceived, advo-
cated, and headed POOMA development in its early days, and Scott Haney continued
the leadership. Susan Atlas, Subhankar Banerjee, Timothy Cleland, Julian Cummings,
James Crotinger, David Forslund, Salman Habib, Scott Haney, Paul Hinker, William
Humphrey, Steve Karmesin, Graham Mark, Jeffrey D. Oldham, Ji Qiang, John Reynders,
Robert Ryne, Stephen Smith, M. Srikant, Marydell Tholburn, and Timothy Williams all
helped develop POOMA. Rod Oldehoeft and Jeff Brown of Los Alamos National Labo-

Xiv

http://www.codesourcery.com/
http://www.proximation.com/

Preface

ratory supported CodeSourcery’s and Proximation’s work, including the development of
this manual. John Hall, Don Marshall, Jean Marshall, and the rest of the BLANCA team

at Los Alamos worked closely with the developers and provided valuable suggestions
for improvements.

| am grateful to James Crotinger, Mark Mitchell, Amit Patel, and Stephen Smith who an-
swered my many questions during the writing of this book. Thanks to Deborah Lafferty
of Addison-Wesley Longman, who encouraged me and guided me throughout writing
and publishing this book.

Jeffrey D. Oldham, 2002 March

XV

Chapter 1. Getting Started with POOMA

In this chapter, we describe how to obtain POOMA, prepare it for use, and then compile
a “Hello, POOMA” program. Impatient readers will find the first section helpful. Those

desiring more details will find this section provides a useful overview of the chapter
although it can be skipped.

1.1. Getting Started for Impatient Users

This section is designed for impatient, UNIX-literate readers who wish to start using
POOMA as quickly as possible. We describe how to obtain, configure, compile, and use
the toolkit with a minimum of explanation.

Download

Downloadpooma-2.3.0.tgz from the POOMA download pagattp://pooma.
codesourcery.com/pooma/download). Uncompress and extract the source code:

tar xzvf pooma-2.3.0.tgz
Move into the directory containing the source code:

cd pooma-2.3.0

Configure

To create files necessary for compiling, use
Jconfigure --arch architecture --opt

wherearchitecture indicates the operating system and compiler. Permitted

choices are the names of files in thenfig/arch/ subdirectory omitting the
.conf suffixes.

Compilation of the Library

Create the POOMA library file by first setting tHOOMASUITEenvironment
variable to the architecture’s name and then compiling the source code:

16

http://pooma.codesourcery.com/pooma/download
http://pooma.codesourcery.com/pooma/download

Chapter 1. Getting Started with POOMA

export POOMASUITE=architecture
make

Compiling Programs

We illustrate compiling the “Hello, POOMA” program available @&tamples/
Manual/Sequential/initialize-finalize.cpp:

export POOMAHOME=/home/oldham/pooma/poomal
g++ -I${POOMAHOME}/src \
-I${POOMAHOME}YIib/${POOMASUITE} \
initialize-finalize.cpp \

-0 initialize-finalize \
-L${POOMAHOME}Iib/${POOMASUITE} -lpooma-gcc

ThePOOMAHOMRvironment variable indicates the location of the toolkit header
files and the library.

1.2. Obtaining POOMA

POOMA is open-source software, freely available via the Internet or perhaps
packaged with this book. CodeSourcery, LLGt{p://www.codesourcery.com/)
currently hosts the POOMA Toolkit source code. Download the POOMA
source code pooma-2.3.0.tgz from the POOMA download page
(bttp://pooma.codesourcery.com/pooma/download) available off the POOMA
home pageHttp://www.codesourcery.com/pooma/pooma/). The “tgz” indicates

this is a compressed tar archive file. For a UNIX operating system, one can extract the
source files using the commatar xzvf pooma-2.3.0.tgz

1.3. Compiling the POOMA Library

Most of the POOMA Toolkit source code is available in header files containing tem-
plate class definitions. A few files are compiled and collected together into the POOMA
library.

Before the POOMA toolkit may be compiled, it must benfigured Configuration
creates files used during compilation that are specific to the particular operating sys-

17

http://www.codesourcery.com/
http://pooma.codesourcery.com/pooma/download
http://www.codesourcery.com/pooma/pooma/

Chapter 1. Getting Started with POOMA

tem, compiler, and available libraries that are to be used. The configuration files in the
config/arch/ directory correspond to supported operating systems and compilers. For
exampleLINUXgcc.conf supports compiling under a Linux operating system with gcc
(really g++).8GI64KCC. conf supports compiling under a 64-bit SGI Irix operating sys-
tem with KCC.

To configure the source code, use a command like

Jconfigure --arch LINUXgcc --opt --suite LINUXgcc-opt

The architecture argument to thearch option is the name of the corresponding
configuration file, omitting its conf suffix. The--opt indicates the POOMA Toolkit

will contain optimized source code, which makes the code run more quickly but may
impede debugging. Alternatively, use thelebug option which supports debugging.
The suite namecan be any arbitrary string. We chasENUXgcc-opt to remind us

of the architecture and optimization choie®nfigure creates subdirectories named
“LINUXgcc-opt” for use when compiling the source files. Comments at the beginning
of 1ib/suiteName/PoomaConfiguration.h record the configuration arguments.

To create the POOMA library, the toolkit source files need to be compiled. Specify
the desired suite by setting tROOMASUITEEnvironment variable to the appropriate
value. For example, if using the bash shell, use

export POOMASUITE=suiteName
substituting the suite namessiiteName . If using the csh shell, use
setenv POOMASUITE suiteName

In the previous paragraph, the suite namkelidUXgcc-opt so we would issue the
statement

setenv POOMASUITE LINUXgcc-opt

Issuing themake command compiles the POOMA source code files to create the
POOMA library. The POOMA makefiles assume the GNU™ Make is available so sub-
stitute the proper command to run GNU™ Make if necessary. As each source file is com-
piled, a line is printed. If the compilation succeeds, the POOMA library can be found in,
e.g.,.1lib/LINUXgcc-opt/libpooma-gcc.a. Ifit fails, the makefiles will print a line in-

18

1.3.1.

Chapter 1. Getting Started with POOMA

dicating which file failed to compile. Reading the correspondingf o file may indicate
what failed.

The same POOMA source code can support multiple suites as long as different names
are used. For example, we could haudUXgcc-opt andLINUXgcc-debug

suites. Both of these might specify use of the Linux operating system and gcc, but
one could have optimized code corresponding to the configuration optigpi and

the other could have debuggable code corresponding to the configuration eption
debug . When compiling both the library and user code, BEOMASUITEnviron-

ment variable indicates which suite to use.

DANGER: Configuration Options

(Are you sure you should be reading this section? The DANGER in the title is meant

to warn you about material that ought to be skipped on the first reading. And maybe
also on the second reading. The reader-beware paragraphs sometimes refer to concepts
that aren’t explained until later chapters. (Thanks to Donald E. Knuth for the concept of
DANGER sections and for the preceding text.))

The configuration script supports many more command-line options than the two used
above, but few POOMA users need use them except those using distributed POOMA,
which are described below/configure -h yields a complete list. We also de-
scribe them here.

Table 1-1. Configuration Options

option description

Architecture and Installation Choices

--arch architecture specify the desired operating system and
compiler.architecture should

correspond to a file isonfig/arch/
omitting the.. conf suffix.

--suite suite specify a name for the this particular
configuration. The environment variable
POOMASUITE value should equal
suite when compiling the library.
suite can be any string that can serve as
a filename. If this option is omitted, the
--arch architecture is used.

19

option

--prefix directory

Debugging and Optimization Choices

Chapter 1. Getting Started with POOMA

description

indicates the directory where files are
installed.make install should be
invoked after compiling the library.

--opt

--debug

Compiler Choices

causes an optimized library to be built.
Optimized code typically runs faster than
unoptimized code, but debugging can be
inhibited.

causes an debuggable library to be built.
That is, a debugger will be able to traverse
library code.

--cpp compiler

--c compiler

--f77 compiler

--ar archiver

--link linker

Compiler Options

specifies the C++ compiler to use. The
default value is specified by the
architecture configuration file.

specifies the C compiler to use when
compiling C executables. Such
executables usually are example
programs. The default value is specified
by the architecture configuration file.
specifies the Fortran77 compiler to use.
The default value is specified by the
architecture configuration file.

specifies the library archiver to use when
creating a static library. The default value
is specified by the architecture
configuration file.

specifies the linker to use when creating
POOMA executables. The default value,
usually the same as the C++ compiler, is
specified by the architecture configuration
file.

20

option

Chapter 1. Getting Started with POOMA

description

--static

--shared

--V
--q
--strict

--inc directory

--def definition

--cpparg arguments
--carg arguments
--f77arg arguments
--ararg ~ arguments

--linkarg arguments

creates a static library that will be directly
linked into executables, rather than loaded
dynamically. Compare with the

--shared option. This option is a
default.

creates a library that will be dynamically
loaded when a POOMA executable starts.
It is the executable user’s responsibility to
configure the operating system so the
library will be found, e.g., by setting the
LD LIBRARY_PATHenvironment
variable.

enables verbose output from the compiler
and linker.

disables verbose output from the compiler
and linker.

enables ANSI C++ conformance checking
by the compiler.

causesl directory options to be
passed to the compiler. These indicate
directories where header files are located.
This option may be specified repeatedly.
causesD definition options to be
passed to the compiler. These define
preprocessor symbols. This option may be
specified repeatedly.

specifies C++ compiler options. This
option may be specified repeatedly.
specifies C compiler options. This option
may be specified repeatedly.

specifies Fortran77 compiler options. This
option may be specified repeatedly.
specifies archiver options. This option
may be specified repeatedly.

specifies linker options. This option may
be specified repeatedly.

21

option
--oneper

--noonper

Code Checking

Chapter 1. Getting Started with POOMA

description

enables the one-per-template-instantiation
compiler option. The KCC compiler
requires this option to avoid problems
from instantiating the same template class
repeatedly.

disables the
one-per-template-instantiation compiler
option. See-oneper description.

--bounds turns on bound checking for indexing
operations. That is, indexes into a C
(a(3,4)) are checked to be in the
domain. This option is not the default
because it slows each access but is useful
when checking program correctness.

--insure enables Insure++ code checking.

--purify enables Purify code checking.

Language Choices

--ex enables use of exceptions if available.
Only one of this xor the-noex option
should be specified.

--noex disables use of exceptions. Only one of

--arch-specific-functions

Library Options

this xor the--ex option should be
specified.

enables the use of architecture-specific
initialization functions.

--preinst

DANGER: Option for Distributed
Computation

causes preinstantiated versions of several
templated classes to be included in the
library. This may reduce the time to
compile executables.

--messaging

Configure Options

enables creation of distributed POOMA
executables by enabling use of the
Cheetah communications package.

22

Chapter 1. Getting Started with POOMA

option description

-V turns on verbose output during
configuration, showing which options are
chosen and which are not.

- prevents overwriting existing files during
configuration without first querying the
user.

-f forces overwriting existing files during
configuration without querying the user.
This is the default.

-h prints the list of configuration options.

-? prints the list of configuration options.
This is the same ah .

1.4. Writing and Compiling POOMA Programs

In this section, we describe how to write and compile POOMA programs. We illustrate
this with a “Hello, POOMA” program that initializes and de-initializes the POOMA
library.

The simplest POOMA program is available akamples/Manual/Sequential/
initialize-finalize.cpp. It is annotated in Example 1-1. Before its use, the
POOMA Toolkit must be initialized by a call tmitialize . This usually occurs

in the main function. After its use, the POOMA Toolkit should be shut down using
a call tofinalize . This also usually occurs in th@ain function. Both of these
functions are declared Pooma/Pooma.h. This header file (or another POOMA header
file including it) occurs in every POOMA program.

Example 1-1. A “Hello, POOMA” Program

#include "Pooma/Pooma.h" Q)
#include <iostream>

int main(int argc, char *argv[])

{

I/l Prepare the Pooma library for execution.

23

Chapter 1. Getting Started with POOMA

Pooma::initialize(argc,argv); (2)
std::cout << "Hello, Pooma." << std::endl;

/I Tell the Pooma library execution has finished.
Pooma::finalize(); 3
return O;

(1) This POOMA header file must be included directly or indirectly in all POOMA
programs.

(2) Every POOMA program must initialize the POOMA library by invoking ihée
tialize function.

(3) The POOMA Toolkit is shut down by invoking thignalize function, which
must be called after all other POOMA functions.

Compiling this program requires including POOMA header files and library. Let us as-
sume that the environment varia®© OMAHOMEscribes the location of the POOMA
source code. For example,

export POOMAHOME=/home/user/pooma

We illustrate how to compile the program using the g++ compiler:
g++ -I${POOMAHOME}/src -I${POOMAHOME}/lib/LINUXgcc \
initialize-finalize.cpp -0 initialize-finalize \

-L${POOMAHOMEY}/Iib/${POOMASUITE} -Ipooma-gcc

We explain the five command-line options:

-I${POOMAHOMEY}/src

is the root of a directory tree containing all POOMA template header files. For
example, the full path name @boma/Pooma.h is ${POOMAHOME}/src/Pooma/
Pooma.h.

24

Chapter 1. Getting Started with POOMA
-I${POOMAHOME}/lib/${POOMASUITE}

indicates the directory that contains configuration-specific header files.

initialize-finalize.cpp
is the source code to compile. It must hav@ain function with calls to POOMA's
initialize andfinalize

-0 initialize-finalize

determines the name of the resulting executable program.

-L${POOMAHOME}/lib/${POOMASUITE}
is the directory containing the POOMA library file to use.

-lpooma-gcc

indicateslibpooma-gcc.a is the name of the POOMA library in the directory
specified by thel. option.

Running the resulting executable prints “Hello, Pooma.”:

$.linitialize-finalize
Hello, Pooma.

$
1.4.1. DANGER: initialize and finalize
In this section, we present detailed explanationidtalize andfinalize

Very few POOMA users ever need to use any form different from that presented in the
“Hello, POOMA” program.

Prototypes

#include "Pooma/Pooma.h"
/I or "Pooma/Arrays.h” or "Pooma/Fields.h" or ...

25

Chapter 1. Getting Started with POOMA

bool Pooma::initialize (int &argc, char ** &argv,

bool initRTS = true, bool getCLArgsArch = true, bool

initArch = true);

bool Pooma:initialize (Pooma::Options &opts, bool
INtRTS = true, bool initArch = true);

bool Pooma::finalize (void);

bool Pooma::finalize (bool quitRTS, bool quitArch);
Explanation

Before its use, the POOMA Toolkit must be initialized by a callimtial-

ize . This usually occurs in thénain function. The first form removes and pro-
cesses any POOMA-specific arguments from the command-line arguargus and

argc . The third, fourth, and fifth arguments all have a default valudraé . If
intRTS is true , the run-time system is initialized. E.g., the contexts are pre-
pared for use. IgetCLArgsArch istrue , architecture-specific command-line argu-
ments are removed froargv andargc . Architecture-specific initialization occurs if
getCLArgsArch istrue . An architecture is specified by a hardware interface, e.g.,
processor type, but frequently is also associated with an operating system or compiler.
For example, Metrowerks for the Macintosh has an architecture-specific initialization.
The function always returrisue

initialize 's alternative form assumes the POOMA-specific and architecture-
specific command-line arguments have already been removeddrgin andargc

and stored iropts . Its other two parameters have the same meaning, and the two func-
tions’ semantics are otherwise the same.

After its use, the POOMA Toolkit should be shut down using a cdirtalize . This
usually occurs in thenain function. The former, and more frequently used, form first
prints any statistics and turns off all default POOMA streams. Then it shuts down the
run-time system if it was previously initialized and then shuts down architecture-specific
objects if they were previously initialized. The latter form gives provides explicit control
whether the run-time systeqUyitRTS) and architecture-specific objectpiftArch)

are shut down. Both functions always retutnse

Including almost any POOMA header file, rather than jPstma/Pooma.h suffices
since most other POOMA header files include it.

26

Chapter 1. Getting Started with POOMA

1.5. Supporting Distributed Computation

To use multiple processors with POOMA requires installing the Cheetah messaging li-
brary and an underlying messaging library such as the Message Passing Interface (MPI)
Communications Library or the MM Shared Memory Library. In the following section,
we first describe how to install MM. Read it only if using MM, not MPI. Then we de-
scribe how to install Cheetah and configure POOMA to use it.

1.5.1. Obtaining and Installing the MM Shared Memory
Library

Cheetah, and thus POOMA, can use Ralf Engelschall's MM Shared Memory Li-
brary to pass messages between processors. For example, the author uses this library
on a two-processor computer running Linux. The library, availabletap: //www.
engelschall.com/sw/mm/, is available at no cost and has been successfully tested on

a variety of Unix-like platforms.

We describe how to download and install the MM library.

1.Download the library from the POOMA Download page
(http://pooma.codesourcery.com/pooma/download) available off the
POOMA home pagehfttp: //www.codesourcery.com/pooma/pooma/).

2. Extract the source code usitgr xzvf mm-1.1.3.tar.gz . Change di-
rectories into the resulting source code direcimiy1.1.3.

3. Prepare to compile the source code by configuring it usingctefigure
command. To change the default installation directbugr/local, specify--
prefix= directory option. The other configuration options can be listed
by specifying the--help option. Since the author prefers to keep all POOMA-
related code in hipoomasubdirectory, he uses

Jconfigure --prefix=${HOME}/pooma/mm-1.1.3

4. Create the library by issuing threake command. This compiles the source code
using a C compiler. To use a different compiler than the MM configuration chooses,
set theCCenvironment variable to the desired compiler before configuring.

5. Optionally test the library by issuing theake test command. If success-
ful, the penultimate line should b®K - ALL TESTS SUCCESSFULLY
PASSED

6. Install the MM Library by issuing thenake install command. This copies

27

http://www.engelschall.com/sw/mm/
http://www.engelschall.com/sw/mm/
http://pooma.codesourcery.com/pooma/download
http://www.codesourcery.com/pooma/pooma/

Chapter 1. Getting Started with POOMA

the library files to the installation directory. The-1.1.3 directory containing the
source code may now be removed.

1.5.2. Obtaining and Installing the Cheetah Messaging
Library

The Cheetah Library decouples communication from synchronization. Using asyn-
chronous messaging rather than synchronous messaging permits a message sender to
operate without the cooperation of the message recipient. Thus, implementing message
sending is simpler and processing is more efficiently overlapped with it. Remote method
invocation is also supported. The library was developed at the Los Alamos National
Laboratory’s Advanced Computing Laboratory.

Cheetah’s messaging is implemented using an underlying messaging library such as the
Message Passing Interface (MPI) Communications Library or the MM Shared Memory
Library. MPI works on a wide variety of platforms and has achieved widespread usage.
MM works under Unix-like operating systems on any computer with shared memory.
Both libraries are available at no cost. The instructions below work for whichever library
you choose.

We describe how to download and install Cheetah.

1.Download the library from the POOMA Download page
(http://pooma.codesourcery.com/pooma/download) available off the
POOMA home pagehttp://www.codesourcery.com/pooma/pooma/).

2. Extract the source code usitgr xzvf cheetah-1.0.tgz . Change di-
rectories into the resulting source code direcidigetah-1.0.

3. Edit a configuration file corresponding to your operating system and compiler.
These.conf files are located in theonfig directory. For example, to use gcc
(really g++) with the Linux operating system, usenfig/LINUXGCC. conf.

The configuration file usually does not need modification. However, if you are us-
ing MM, ensureshmem__default_dir specifies its location. For example, the
author modified the value tdhome/oldham/pooma/mm-1.1.3"

4. Prepare to compile the source code by configuring it usingtndigure com-
mand. Specify the configuration file using tharch option. Its argument should
be the configuration file's name, omitting itsonf suffix. For example;-arch

28

http://pooma.codesourcery.com/pooma/download
http://www.codesourcery.com/pooma/pooma/

Chapter 1. Getting Started with POOMA
LINUXGCC Some other options include

--help
lists all the available options

--shmem --nompi
indicates use of MM, not MPI

--mpi --noshmem
indicates use of MPI, not MM

--opt
causes the compiler to produce optimized source code

--noex
prevents use of C++ exceptions

--static
creates a static library, not a shared library

--shared
creates a shared library, not a static library. This is the default.

--prefix directory
specifies the installation directory where the library will be copied rather than
the default.

For example, the author uses

Jconfigure --arch LINUXGCC --shmem --nompi \
--noex --static --prefix ${HOME}/pooma/cheetah-1.0 \
--opt

The--arch LINUXGCC indicates use of gcc (or g++) under a Linux operating
system. The MM library is used, but C++ exceptions are not. The latter choice
matches POOMA's default choice. A static library, not a shared library, is cre-
ated. This is also POOMA'’s default choice. The library will be installed in the
${HOME}/pooma/cheetah-1.0. Finally, the library code will be optimized, hope-
fully running faster than unoptimized code.

5. Follow the directions printed bgonfigure : Change directories to tHeib sub-
directory named by the-arch argument and then typmake to compile the

29

Chapter 1. Getting Started with POOMA

source code and create the library.

6. Optionally ensure the library works correctly by issuing thake tests com-
mand.

7. Install the library by issuing thenake install command. This copies the li-
brary files to the installation directory. Th@eetah-1.0 directory containing the
source code may now be removed.

1.5.3. Configuring POOMA When Using Cheetah

To use POOMA with Cheetah, one must tell POOMA the location of the Cheetah library
using the--messaging configuration option. To do this,

1. Set the Cheetah directory environment variaGllEETAHDIRto the directory
containing the installed Cheetah library. For example,

export CHEETAHDIR=${HOME}/pooma/cheetah-1.0

specifies the installation directory used in the previous section. If using the csh shell,
usesetenv CHEETAHDIR ${HOME}/pooma/cheetah-1.0

2.When configuring POOMA, specify themessaging option. For example,
Jconfigure --arch LINUXgcc --opt --messaging config-
ures for Linux, gcc, and an optimized library using Cheetah.

30

Chapter 2. Introduction

The Parallel Object-Oriented Methods and Applications (POOMA) Toolkit is a C++
toolkit for writing high-performance scientific programs. The toolkit provides a variety
of tools:

- containers and other abstractions suitable for scientific computation,

- support for a variety of computation modes including data-parallel expressions,
stencil-based computations, and lazy evaluation,

- support for writing parallel and distributed programs,

« automatic creation of all interprocessor communication for parallel and distributed
programs, and

- automatic out-of-order execution and loop rearrangement for fast program execution.

Since the toolkit provides high-level abstractions, POOMA programs are much shorter

than corresponding Fortran or C programs and require less time to write and less time to

debug. Using these high-level abstractions, the same code runs on a sequential, parallel,

and distributed computers. It runs almost as fast as carefully crafted machine-specific

hand-written programs. The toolkit is open-source software, available for no cost, and

compatible with any modern C++ compiler.

2.1. POOMA Goals

The goals for the POOMA Toolkit have remained unchanged since its conception in
1994:

1. Code portability across serial, distributed, and parallel architectures without any
change to the source code.

2. Development of reusable, cross-problem-domain components to enable rapid appli-
cation development.

3. Code efficiency for kernels and components relevant to scientific simulation.

4. Toolkit design and development driven by applications from a diverse set of scien-
tific problem domains.

5. Shorter time from problem inception to working parallel simulations.
Below, we discuss how POOMA achieves these goals.

31

Chapter 2. Introduction
Code Portability for Sequential and Distributed Programs

The same POOMA programs run on sequential, distributed, and parallel computers. No
change in source code is required. Two or three lines specify how each container’s data
should be distributed among available processors. Using these directives and run-time
information about the computer’'s configuration, the toolkit automatically distributes
pieces of the container domains, calleatches among the available processors. If a
computation needs values from another patch, POOMA automatically passes the values
to the patch where it is needed. The same program, and even the same executable, works
regardless of the number of the available processors and the size of the containers’ do-
mains. A programmer interested in only sequential execution can omit the two or three
lines specifying how the domains are to be distributed.

Rapid Application Development

The POOMA Toolkit is designed to enable rapid development of scientific and dis-
tributed applications. For example, its vector, matrix, and tensor classes model the cor-
responding mathematical concepts.Aigay andField classes model the discrete
spaces and mathematical arrays frequently found in computational science and math. See
Figure 2-1. The left column indicates theoretical science and math concepts, the mid-
dle column computational science and math concepts, and the right column computer
science implementations. For example, theoretical physics frequently uses continuous
fields in three-dimension space, while algorithms for a corresponding computational
physics problem usually uses discrete fields. POOMA containers, classes, and functions
ease engineering computer programs for these algorithms. For example, the POOMA
Field container models discrete fields: both map locations in discrete space to val-
ues and permit computations of spatial distances and values. The PORYK&4(
container models the mathematical concept of an array, frequently used in numerical
analysis.

Figure 2-1. How POOMA Fits Into the Scientific Process

science [math algorith ms implemzntation enginesring
continuous fizld o digemte fizld POOMA container
- values discrtization ® dizcrete space- = values F::;ld! ¥ layoutengine i-» values
numerical mathematical army W
analyzis o

linear algebra - Wi values

In the translation from theoretical science to computational science to computer pro-
grams, POOMA eases the implementation of algorithms as computer programs.

32

Chapter 2. Introduction

POOMA containers support a variety of computation modes, easing translation of al-
gorithms into code. For example, many algorithms for solving partial differential equa-
tions use stencil-based computations so POOMA supports stencil-based computations
onArray s andField s. POOMA also supports data-parallel computation similar to
Fortran 90 syntax. To ease implementing computations wheré&i@ié ’s values are

a function of several othdrield ’s values, the programmer can specifieation. Re-

lations are lazily evaluated: whenever the depenffé@ld ’s values are needed and

they are dependent onFdeld whose values have changed, the values are computed.
Relations also assists correctness by eliminating the frequently forgotten need for a pro-
grammer to ensurefaield ’s values are up-to-date before being used.

Efficient Code

POOMA incorporates a variety of techniques to ensure it produces code that executes
as quickly as special-case, hand-written code. These techniques include extensive use
of templates, out-of-order evaluation, use of guard layers, and production of fast inner
loops.

POOMA's uses of C++ templates ensures as much as work as possible occurs at com-
pile time, not run time. This speeds programs’ execution. Since more code is produced
at compile time, more code is available to the compiler’s optimizer, further speeding
execution. The POOMAArray container benefits from the use of template param-
eters. Their use permits the use of specialized data storage classesngiiees An

Array 's Engine template parameter specifies how data is stored and indexed. Some
Array s expect almost all values to be used, while others might be mostly empty. In
the latter case, using a specialized engine storing the few nonzero values greatly reduces
storage requirements. Using engines also permits fast creation of container views, known
asarray sectiongn Fortran 90. A view’s engine is the same as the original container’s
engine, but the view object’s restricted domain is a subset of the original domain. Space
requirements and execution time to use views are minimal.

Using templates also permits containers to support polymorphic indexing, e.g., index-
ing both by integers and by three-dimensional coordinates. A container uses templatized
indexing functions that defer indexing operations to its engine’s index operators. Since
the container uses templates, thegine can define indexing functions with different
function arguments, without the need to add corresponding container functions. Some of
these benefits of using templates can be expressed without them, but doing so increases
execution time. For example, a container could have a pointer to an engine object, but
this requires a pointer dereference for each operation. Implementing polymorphic index-
ing without templates would require adding virtual functions corresponding to each of
the indexing functions.

33

Chapter 2. Introduction

To ensure multiprocessor POOMA programs execute quickly, it is important that inter-
processor communication overlaps with intraprocessor computations as much as possi-
ble and that communication is minimized. Asynchronous communication, out-of-order
evaluation, and use of guard layers all help achieve these goals. POOMA uses the asyn-
chronous communication facilities of the Cheetah communication library. When a pro-
cessor needs data that is stored or computed by another processor, a message is sent
between the two. If synchronous communication was used, the sender must issue an ex-
plicit send, and the recipient must issue an explicit receive, synchronizing the two pro-
cessors. Cheetah permits the sender to put and get data without synchronizing with the
recipient processor, and it also permits invoking functions at remote sites to ensure de-
sired data is up-to-date. Thus, out-of-order evaluation must be supported. Out-of-order
evaluation also has another benefit: Only computations directly or indirectly related to
values that are printed need occur.

Surrounding a patch witguard layerscan help reduce interprocessor communication.
For distributed computation, each container’s domain is split into pieces distributed
among the available processors. Frequently, computing a container value is local, in-
volving just the value itself and a few neighbors, but computing a value near the edge
of a processor’s domain may require knowing a few values from a neighboring domain.
Guard layers permit these values to be copied locally so they need not be repeatedly
communicated.

POOMA uses the PETE Library to ensure inner loops involving POOMA’s object-
oriented containers run as quickly as hand-coded loops. PETE (the Portable Expression
Template Engine) uses expression-template technology to convert data-parallel state-
ments into efficient loops without any intermediate computations. For example, consider
evaluating the statement

A+= B+ 2*C;

whereA andC arevector<double> s andBis avector<int> . Naive evalua-

tion might introduce intermediaries feB , 2*C, and their sum. The presence of these
intermediaries in inner loops can measurably slow performance. To produce a loop with-
out intermediaries, PETE stores each expression as a parse tree. Using its templates, the
parse tree is converted, at compile time, to a loop directly evaluating each component of
the result without computing intermediate values. For example, the code corresponding
to the statement above is

vector<double>::iterator iterA = A.begin();

vector<int>::const_iterator iterB = B.begin();
vector<double>::const_iterator iterC = C.begin();

34

Chapter 2. Introduction

while (iterA '= A.end()) {
*iterA += -*iterB + 2 * *iterC;
++iterA; ++iterB; ++iterC;

}

Furthermore, since the code is available at compile time, not run time, it can be further
optimized, e.g., moving any loop-invariant code out of the loop.

Used for Diverse Set of Scientific Problems

POOMA has been used to solve a wide variety of scientific problems. Most recently,
physicists at Los Alamos National Laboratory implemented an entire library of hydro-
dynamics codes as part of the U.S. government’s science-based Stockpile Stewardship
Program. Other applications include a matrix solver, an accelerator code simulating the
dynamics of high-intensity charged particle beams in linear accelerators, and a Monte
Carlo neutron transport code.

Easy Implementation

POOMA'’s tools greatly reduce the time to implement applications. As we noted above,
POOMA's containers and expression syntax model the computational models and algo-
rithms most frequently found in scientific programs. These high-level tools are known
to be correct and reduce the time to debug programs. Since the same programs run on
one processor and multiple processors, programmers can write and test programs us-
ing their one or two-processor personal computers. With no additional work, the same
program runs on computers with hundreds of processors; the code is exactly the same,
and the toolkit automatically handles distribution of the data, all data communication,
and all synchronization. The net result is a significant reduction in programming time.
For example, a team of two physicists and two support people at Los Alamos National
Laboratory implemented a suite of hydrodynamics kernels in six months. Their work
replaced a previous suite of less-powerful kernels which had taken sixteen people sev-
eral years to implement and debug. Despite not have previously implemented any of the
kernels, they implemented one new kernel every three days, including the time to read
the corresponding scientific papers!

2.2. POOMA is Open-Source Software

The POOMA Toolkit is open-source software. Anyone may download, read, redistribute,
and modify the POOMA source code. If an application requires a specialized container

35

Chapter 2. Introduction

not already available, any programmer may add it. Any programmer can extend it to
solve problems in previously unsupported domains. Companies using the toolkit can
read the source code to ensure it has no security holes. It may be downloaded at no
cost and used for perpetuity. There are no annual licenses and no on-going costs. By
keeping their own copies, companies are guaranteed the software will never disappear.
In summary, the POOMA Toolkit is low-risk software.

36

Chapter 3. A Tutorial Introduction

POOMA provides different containers and processor configurations and supports dif-
ferent implementation styles, as described in Section 2.1. In this chapter, we present
several different implementations of ti#oof2d two-dimensional diffusion simula-

tion program:

a C-style implementation omitting any use of POOMA and computing each array

element individually,

- a POOMAArray implementation computing each array element individually,

- aPOOMAArray implementation using data-parallel statements,

- aPOOMAArray implementation using stencils, which support local computations,

. astencil-based POOMArray implementation supporting computation on multiple
processors

- aPOOMAField implementation using data-parallel statements, and

. adata-parallel POOMAield implementation for multiprocessor execution.

These illustrate théArray , Field , Engine , layout, mesh, andDomain data

types. They also illustrate various immediate computation styles (element-wise accesses,
data-parallel expressions, and stencil computation) and various processor configurations
(one processor and multiple processors).

TheDoof2d diffusion program starts with a two-dimensional grid of values. To model

an initial density, all grid values are zero except for one nonzero value in the center. Each
averaging, each grid element, except the outermost ones, updates its value by averaging
its value and its eight neighbors. To avoid overwriting grid values before all their uses
occur, we use two arrays, reading the first and writing the second and then reversing
their roles within each iteration.

We illustrate the averagings in Figure 3-1. Initially, only the center element has nonzero
value. To form the first averaging, each element’s new value equals the average of its and
its neighbors’ previous values. Thus, the initial nonzero value spreads to a three-by-three
grid. The averaging continues, spreading to a five-by-five grid of nonzero values. Values
in the outermost grid cells are always zero.

37

Chapter 3. A Tutorial Introduction
Figure 3-1.Doof2d Averagings
Array b Initial Configuration

00 |00 (00| 00 |00 | Q0 (00

00|00 (00| 00 | 00| Qd | 00

00 |00 (00| 00 [Q0| 00 [Q0

00 |00 [00 0000 0.0 | o | 00

00 |00 (00| 00 |00 | QO | 00

00|00 (00| 00 | 00| Qd | 00

00|00 (00| 00 | 00 | Qd | 00
- Array a: After the first averaging

00 |00 (00| 00 | 00 | QO | 0.0

00 | Q0 (00| 00 | 00 | QO | 00

00 | 00 (11L 1L LI Lf @ | 0.0

00 | 00 (LLLLLLILL{LIL.L) @2 | Q0

00 00 (1151 L1 LI Lf & | 0.0

00 | 00 | 00| Q0 [Q0| 00 | Q0

00 |00 (00| 00 | 00 | Q0 | 00

38

Chapter 3. A Tutorial Introduction
Array b After the second averaging

00 |00 (00| 00 | 00 | QO | 0.0

0.0 | 123 (247 | 37.0 [247 123 | Q0

00 247 (494|741 | 4924|247 | 0.0

00 370740 |L11.1) 741 | 37.0 | 0.0

00 247 (494 | 741 | 494|247 | 0.0

00 | 123 (247 | 37.0 | 247123 | 0.0

00 |00 (00| 00 | 00 | Q0 [00

Before presenting the various implementationafof2d , we explain how to install
the POOMA Toolkit.

3.1. Hand-Coded Implementation

Before implementindDoof2d using the POOMA Toolkit, we present a hand-coded
implementation oDoof2d . See Example 3-1. After querying the user for the number

of averagings, the arrays’ memory is allocated. Since the arrays’ size is not known at
compile time, the arrays are accessed via pointers to allocated dynamic memory. This
memory is deallocated at the program’s end to avoid memory leaks. The arrays are
initialized with initial conditions. For thé array, all values except the central ones have
nonzero values. Only the outermost values ofdaheray need be initialized to zero, but

we instead initialize them all using the same loop initializing

The simulation’s kernel consists of triply nested loops. The outermost loop controls the
number of iterations. The two inner nested loops iterate through the arrays’ elements,
excepting the outermost elements; note the loop indices range from 1 to n-2 while the
array indices range from 0 to n-1. Eaahvalue is assigned the average of its corre-
sponding value i and the latter's neighbors. Values in the two-dimensional grids are
accessed using two sets of brackets, afj][j] . After assigning values ta, a
second averaging reads valuesinwriting values inb.

After the kernel finishes, the final central value is printed. If the desired number of
averagings is even, the valuelinis printed; otherwise, the value @is used. Finally,
the dynamically-allocated memory must be freed to avoid memory leaks.

39

Chapter 3. A Tutorial Introduction

Example 3-1. Hand-Coded Implementation ofDoof2d

#include <iostream> // has std::cout, ...
#include <stdlib.h> // has EXIT_SUCCESS

/Il Doof2d: C-like, element-wise implementation

int main()

{

/I Ask the user for the number of averagings. (2)
long nuAveragings, nulterations;
std::cout << "Please enter the number of averagings: ";
std::cin >> nuAveragings;
nulterations = (nuAveragings+1)/2;

/I Each iteration performs two averagings.

/I Use two-dimensional grids of values. (2)
double **a;
double **b;

/I Ask the user for the number n of values along one
/I dimension of the grid. 3)

long n;

std::cout << "Please enter the array size: ";

std::cin >> n;

/I Allocate the arrays. (4)
typedef double* doublePtr;
a = new doublePtr[n];
b = new doublePtr[n];
for (int i = 0; i < n; i++) {
a[i] = new double[n];
b[i] = new double[n];

}

/[Set up the initial conditions.

/I All grid values should be zero except for the
/I central value. (5)

for (int j = 0; j < n; j++4)

40

for (int i = 0; i < n; i++)
alillil = bl = 0.0;
b[n/2][n/2] = 1000.0;

/I Average using this weight.
const double weight = 1.0/9.0;

/I Perform the simulation.

Chapter 3. A Tutorial Introduction

(6)

for (int k = 0; k < nulterations; ++k) {

/I Read from b. Write to a.

for (int j = 1; j < n-1; j++)

for (int i = 1; i < n-1; i++4)
alilljj = weight *

(b[i+1][j+1] + b[i+1][j

bli 1[+1] + b[i]Ij

b[i-1][j+1] + b[i-1]j

/I Read from a. Write to b.
for (int j = 1; j < n-1; j++)
for (int i = 1; i < n-1; i++4)
b[i][j] = weight *

(@fi+1][j+1] + ali+1](j
ali J[i+1] + afi i

afi-1][j+1] + al[i-1]j

}

/I Print out the final central value.
std::cout <<

(7)

1 + bli+1][-1] +
] + b
] + b[i-1][-1]);

1-1] +

(8)

1 + afi+1]f-1] +
] + ai

1 + ali-1][-1]);

10-1] +

(9)

(nuAveragings % 2 ? a[n/2][n/2] : b[n/2][n/2])
<< std::endl;
I/l Deallocate the arrays. (20)

for (int i = O;
delete [] ali];
delete [] Di];

}

delete [] a;

delete [] b;

i< n; i++) {

return EXIT_SUCCESS;

41

Chapter 3. A Tutorial Introduction

(1) The user specifies the desired number of averagings.

(2) These variables point to the two-dimensional, dynamically-allocated grids so we use
a pointer to a pointer todouble .

(3) The user enters the desired grid size. The grid will be a squarematn grid cells.
(4) Memory for the arrays is allocated. By default, the array indices are zero-based.

(5) Initially, all grid values are zero except for the one nonzero value at the center of the
second array. Array positions are indicated using two brackets ailjj] LA
better implementation might initialize only the outermost values oftlagray.

(6) This constants indicates the average’s weighting.

(7) Eacha value, except an outermost one, is assigned the average of its analbgous
value and that value’s neighbors. Note the loop indices ensure the outermost values
are not changed. Thaeight 's value ensures the computation is an average.

(8) The second averaging comput&s values using values storedan
(9) After the averagings finish, the central value is printed.

(10)The dynamically-allocated memory must be deallocated to avoid memory leaks.

To compile the executable, change directories to the POGM#uples/Manual/
Doof2d directory. Ensure th€ OOMASUITEenvironment variable specifies the de-
sired suite namsuiteName , as we did when compiling POOMA in Section 1.3. Is-
suing themake Doof2d-C-element command creates the executabléte-
Namé&Doof2d-C-element

When running the executable, specify the desired nonnegative number of averagings and
the nonnegative number of grid cells along any dimension. The resulting grid has the
same number of cells along each dimension. After the executable finishes, the resulting
value of the central element is printed.

3.2. Element-wise Array Implementation

The simplest way to use the POOMA Toolkit is to use the POOMPay class instead
of C arraysArray s automatically handle memory allocation and deallocation, support
a wider variety of assignments, and can be used in expressions. Example 3-2 implements

42

Chapter 3. A Tutorial Introduction

Doof2d usingArray s and element-wise accesses. Since the same algorithm is used
as Example 3-1, we will concentrate on the differences.

Example 3-2. Element-wiséArray Implementation of Doof2d

#include <iostream> // has std::cout, ...
#include <stdlib.h> // has EXIT_SUCCESS
#include "Pooma/Arrays.h"

/I has POOMA'’s Array declarations (2)

/[Doof2d: POOMA Arrays, element-wise implementation

int main(int argc, char *argv[])

{

I/l Prepare the POOMA library for execution. (2)
Pooma::initialize(argc,argv);

/I Ask the user for the number of averagings.
long nuAveragings, nulterations;
std::cout << "Please enter the number of averagings: ";
std::cin >> nuAveragings;
nulterations = (nuAveragings+1)/2;
/I Each iteration performs two averagings.

/I Ask the user for the number n of values along
/I one dimension of the grid.

long n;

std::cout << "Please enter the array size: ";
std::cin >> n;

I/l Specify the arrays’ domains [0,n) x [0,n). 3)
Interval<1> N(O, n-1);
Interval<2> vertDomain(N, N);

/I Create the arrays. 4)

I/l The Array template parameters indicate
/I 2 dimensions, a ’'double’ value

/I type, and ordinary ’'Brick’ storage.
Array<2, double, Brick> a(vertDomain);

43

Chapter 3. A Tutorial Introduction

Array<2, double, Brick> b(vertDomain);

/l Set up the initial conditions.
/[All grid values should be zero except for the

/I central value. (5)
for (int j = 1; j < n-1; j++4)
for (int i = 1; i < n-1; i++4)
a(i,j) = b(i,j) = 0.0;
b(n/2,n/2) = 1000.0;

/I In the average, weight elements with this value.
const double weight = 1.0/9.0;

/I Perform the simulation.
for (int k = 0; k < nulterations; ++k) {
/I Read from b. Write to a.
for (int j = 1; j < n-1; j++)
for (int i = 1; i < n-1; i++)
a(i,j)) = weight * (6)
(b(i+1,j+1) + b(i+1,j) + b(i+1,-1) +
b(i ,j+1) + b(i ,j) + b(i 1) +
b(i-1,j+1) + b(i-1,j) + b(i-1,j-1));

/I Read from a. Write to b.
for (int j = 1; j < n-1; j++)
for (int i = 1; i < n-1; i++)
b(,) = weight *
(a(i+1,j+1) + a(i+1,j) + a(i+1,-1) +
aii j+l) +a(j) +al 1) +
a(i-1,j+1) + a(i-1,)) + a(i-1,-1));
}

/I Print out the final central value.
Pooma::blockAndEvaluate();

/I Ensure all computation has finished.
std::cout <<

(nuAveragings % 2 ? a(n/2,n/2) : b(n/2,n/2))

<< std::endl;

/I The arrays are automatically deallocated. (7)

44

Chapter 3. A Tutorial Introduction

/I Tell the POOMA library execution finished. (8)
Pooma::finalize();
return EXIT_SUCCESS;

}

(1) To use POOMAArray s, thePooma/Arrays.h must be included.
(2) The POOMA Toolkit structures must be constructed before their use.

(3) Before creating airray , its domain must be specified. Thelnterval rep-
resents the one-dimensional integral set {0, 1, 2, ..., n-1}. [Therval<2>
vertDomain object represents the entire two-dimensional index domain.

(4) An Array ’'stemplate parameters indicate its dimension, its value type, and how the
values will be stored or computed. TBgick Engine type indicates values will
be directly stored. It is responsible for allocating and deallocating storageso
anddelete statements are not necessary. VeetDomain specifies the array
index domain.

(5) The first loop initializes allArray values to the same scalar value. The second
statement illustrates assigning oAeray value. Indices, separated by commas,
are surrounded by parentheses rather than surrounded by square bfhckets (

(6) Array element access uses parentheses, rather than square brackets.
(7) TheArray s deallocate any memory they require, eliminating memory leaks.

(8) The POOMA Toolkit structures must be destructed after their use.

We describe the use éfrray and the POOMA Toolkit in Example 3-Array s, de-

clared in thePooma/Arrays . h, are first-class objects. They “know” their index domain,

can be used in expressions, can be assigned scalar and array values, and handle their
own memory allocation and deallocation.

The creation of th@ andb Array s requires an object specifying their index domains.
Since these are two-dimensional arrays, their index domains are also two-dimensional.
The two-dimensionalnterval<2> object is the Cartesian product of two one-
dimensionallnterval<1> objects, each specifying the integral set {0, 1, 2, ...,
n-1}.

An Array 's template parameters indicate its dimension, the type of its values, and how
the values are stored. Boghandb are two-dimension arrays storiggpuble s so their
dimension is 2 and their value type double . An Engine stores arArray 's

45

Chapter 3. A Tutorial Introduction

values. For example, Brick Engine explicitly stores all values. L£ompress-
ibleBrick Engine also explicitly stores values if more than one value is present,
but, if all values are the same, storage for just that value is required. Since an engine can
store its values any way it desires, it might instead compute its values using a function
or compute using values stored in separate engines. In practice, most explicitly specified
Engine s are eitheBrick or CompressibleBrick

Array s support both element-wise access and scalar assignment. Element-wise access
uses parentheses, not square brackets. For exab{pi&,n/2) specifies the cen-

tral element. The scalar assignmént= 0.0 assigns the same 0.0 value to all array
elements. This is possible because the array knows the extent of its domain. We illustrate
these data-parallel statements in the next section.

Any program using the POOMA Toolkit must initialize the toolkit's data structures
using Pooma::initialize(argc,argv) . This extracts POOMA-specific
command-line options from the program’s command-line arguments and initial-
izes the interprocessor communication and other data structures. When finished,
Pooma::finalize() ensures all computation and communication has finished
and the data structures are destructed.

3.3. Data-Parallel Array Implementation

POOMA supports data-parall@rray accesses. Many algorithms are more easily ex-
pressed using data-parallel expressions. Also, the POOMA Toolkit can sometimes re-
order the data-parallel computations to be more efficient or distribute them among var-
ious processors. In this section, we concentrate on the differences between the data-
parallel implementation dDoof2d listed in Example 3-3 and the element-wise imple-
mentation listed in the previous section.

Example 3-3. Data-ParallelArray Implementation of Doof2d

#include <iostream> // has std::icout, ...
#include <stdlib.h> // has EXIT_SUCCESS
#include "Pooma/Arrays.h"
/I has POOMA’s Array declarations
/[Doof2d: POOMA Arrays, data-parallel implementation

int main(int argc, char *argv[])

46

Chapter 3. A Tutorial Introduction

Il Prepare the POOMA library for execution.
Pooma::initialize(argc,argv);

/I Ask the user for the number of averagings.
long nuAveragings, nulterations;
std::cout << "Please enter the number of averagings: ";
std::cin >> nuAveragings;
nulterations = (nuAveragings+1)/2;
/I Each iteration performs two averagings.

I/l Ask the user for the number n of values along one
/I dimension of the grid.

long n;

std::cout << "Please enter the array size: ";

std::.cin >> n;

/Il Specify the arrays’ domains [0,n) x [O,n).
Interval<1> N(O, n-1);
Interval<2> vertDomain(N, N);

/I Set up interior domains [1,n-1) x [1,n-1)
/I for computation. (2)

Interval<1> 1(1,n-2);

Interval<l> J(1,n-2);

/I Create the arrays.

/I The Array template parameters indicate 2 dimensions,
/la ’double’ value

/I type, and ordinary ’'Brick’ storage.

Array<2, double, Brick> a(vertDomain);

Array<2, double, Brick> b(vertDomain);

/l Set up the initial conditions.
/I All grid values should be zero except for the
/I central value.

a=>b=0.0;
/I Ensure all data-parallel computation finishes
/I before accessing a value. (2)

Pooma::blockAndEvaluate();

47

Chapter 3. A Tutorial Introduction
b(n/2,n/2) = 1000.0;

/I In the average, weight elements with this value.
const double weight = 1.0/9.0;

/I Perform the simulation.
for (int k = 0; k < nulterations; ++k) {
/I Read from b. Write to a. 3)
a(l,J) = weight *
(b(1+1,J+1) + b(I+1,J) + b(I+1,3-1) +
bl J+1) + b(I ,J) + b(l ,J-1) +
b(I-1,J+1) + b(I-1,J) + b(I-1,J-1));

/I Read from a. Write to b.
b(l,J) = weight *
(a(l+1,J+1) + a(+1,J) + a(+1,3-1) +
al J+1) +a(l J)+ a(l ,J-1) +
a(l-1,J+1) + a(I-1,J) + a(l-1,3-1));
}

/I Print out the final central value.
Pooma::blockAndEvaluate();

/I Ensure all computation has finished.
std::cout <<

(nuAveragings % 2 ? a(n/2,n/2) : b(n/2,n/2))

<< std::endl;

/I The arrays are automatically deallocated.

/I Tell the POOMA library execution has finished.
Pooma::finalize();
return EXIT_SUCCESS;

(1) These variables specify one-dimensional domains {1, 2, ..., n-2}. Their Cartesian
product specifies the domain of the array values that are modified.

(2) POOMA may reorder computatioooma::blockAndEvaluate ensures
all computation finishes before accessing a particular array element.

48

Chapter 3. A Tutorial Introduction

(3) Data-parallel expressions replace nested loops and array element accesses. For ex-
ample,a(l,J) represents the subset of taearray having a domain equal to the
Cartesian product df andJ. Intervals can shifted by an additive or multiplicative
constant.

Data-parallel expressions use containers and domain objects to indicate a set of parallel
expressions. For example, in the program listed ab@fle])) specifies the subset of
a array omitting the outermost elements. The arra@stDomain domain consists

of the Cartesian product of {0, 1, 2, ..., n-1} with itself, whileandJ each specify
{1, 2,...,n-2}. Thus,a(l,J) is the subset with a domain of the Cartesian product
of {1, 2, ..., n-2} with itself. It is called aviewof an array. It is itself aArray , with

a domain and supporting element access, but its storage is the sarse@sanging a
value ina(l,J) also changes the same valueinChanging a value in the latter also
changes the former if the value is not onead$ outermost elements. The expression
b(I+1,J+1) indicates the subset df with a domain consisting of the Cartesian
product of {2, 3, ..., n-1}, i.e., the same domain&Q,J) but shifted up one unit
and to the right one unit. Only dnterval ’s value, not its name, is important so all
uses of] in this program could be replaced bywithout changing the semantics.

The statement assigningagl,J) illustrates thaArray s may participate in expres-
sions. Each addend is a view of an array, which is itself an array. The views’ indices are
zero-based so their sum can be formed by adding identically indexed elements of each
array. For example, the lower, left element of the result equals the sum of the lower, left
elements of the addend arrays. Figure 3-2 illustrates adding two arrays.

Figure 3-2. Adding Array s

b1 i T+1 J-11 billy bil+1.4-1%
20 34 | 3% | 42 025 | 2T | 29 2019 | 21 | 23
1 28| 32 | 36 = 1 17| 19| 21 + 1 11|13 | 15
o 12| 16 [20 a9 11 | 13 al 3 5 7

o 1 2 12 o 1 2

When adding arrays, values with the same indices, indicated by the small numbers adja-
cent to the arrays, are added.

POOMA may reorder computation or distribute them among various processors so, be-
fore accessing individual values, the code cBlisoma::blockAndEvaluate

49

Chapter 3. A Tutorial Introduction

Before reading an individudrray value, calling this function ensures all computa-
tions affecting its value have finished, i.e., it has the correct value. Calling this function
is necessary only when accessing individual array elements. For example, before the
data-parallel operation of printing an array, POOMA will chlockAndEvalu-

ate itself.

3.4. Stencil Array Implementation

Many scientific computations are localized, computing an array’s value by using neigh-
boring values. Encapsulating this local computation stencil can yield faster code
because the compiler can determine that all array accesses use the same array. Each
stencil consists of a function object and an indication of which neighbors participate in
the function’s computation.

Example 3-4. StencilArray Implementation of Doof2d

#include <iostream> // has std::cout, ...
#include <stdlib.n> // has EXIT_SUCCESS
#include "Pooma/Arrays.h"

/I has POOMA’s Array declarations

/I Doof2d: POOMA Arrays, stencil implementation

/I Define a stencil class performing computation. (1)
class DoofNinePt
{
public:
/I Initialize the constant average weighting.
DoofNinePt() : weight(1.0/9.0) {}

/' This stencil operator is applied to each

/I interior domain position (i,j). The "C"

/I template parameter permits use of this

Il stencil operator with both Arrays & Fields. (2)
template <class C>

inline

typename C::Element t

50

Chapter 3. A Tutorial Introduction

operator()(const C& c, int i, int j) const {
return
weight *
(c.read(i+1,j+1)+c.read(i+1,)+c.read(i+1,j-1)+
c.read(i ,j+1)+c.read(i ,j)+c.read(i ,-1)+
c.read(i-1,j+1)+c.read(i-1,j)+c.read(i-1,j-1));
}

inline int lowerExtent(int) const { return 1; } 3)
inline int upperExtent(int) const { return 1; }

private:

3

/I In the average, weight elements with this value.
const double weight;

int main(int argc, char *argv[])

{

I/l Prepare the POOMA library for execution.
Pooma::initialize(argc,argv);

/I Ask the user for the number of averagings.
long nuAveragings, nulterations;
std::cout << "Please enter the number of averagings: ";
std::cin >> nuAveragings;
nulterations = (nuAveragings+1)/2;
/I Each iteration performs two averagings.

/I Ask the user for the number n of values along one
/I dimension of the grid.

long n;

std::cout << "Please enter the array size: ";
std::.cin >> n;

I/l Specify the arrays’ domains [0,n) x [0,n).
Interval<1> N(O, n-1);

Interval<2> vertDomain(N, N);

/I Set up interior domains [1,n-1) x [1,n-1) for

51

Chapter 3. A Tutorial Introduction

/I computation.
Interval<l> 1(1,n-2);
Interval<2> interiorDomain(l,l);

/I Create the arrays.

/I The Array template parameters indicate
/I 2 dimensions, a ’'double’ value

/I type, and ordinary ’'Brick’ storage.
Array<2, double, Brick> a(vertDomain);
Array<2, double, Brick> b(vertDomain);

/[Set up the initial conditions.

/I All grid values should be zero except for the
/I central value.

a=>b = 0.0;

/I Ensure all data-parallel computation finishes
/I before accessing a value.
Pooma::blockAndEvaluate();

b(n/2,n/2) = 1000.0;

/I Create a stencil performing the computation. 4)
Stencil<DoofNinePt> stencil;

/I Perform the simulation.

for (int k = 0; k < nulterations; ++k) {
/I Read from b. Write to a. (5)
a(interiorbomain) = stencil(b, interiorDomain);

/I Read from a. Write to b.
b(interiorDomain) = stencil(a, interiorDomain);

}

/I Print out the final central value.
Pooma::blockAndEvaluate();

/I Ensure all computation has finished.
std::cout <<

(nuAveragings % 2 ? a(n/2,n/2) : b(n/2,n/2))

<< std::endl;

/I The arrays are automatically deallocated.

52

Chapter 3. A Tutorial Introduction

/I Tell the POOMA library execution has finished.
Pooma::finalize();
return EXIT_SUCCESS;

}

(1) A stencil is a function object implementing a local operation odaray .

(2) POOMA applies this function catiperator() to the interior domain of aAr-
ray . Although not strictly necessary, the function’s template paranfémermits
using this stencil withArray s and other containers. Thiead Array member
function supports only reading values, not writing values, thus possibly permitting
faster access.

(3) These two functions indicate the stencil’s size. For each dimension, the stencil ex-
tends one cell to the left of (or below) its center and also one cell to the right (or
above) its center.

(4) Create the stencil.

(5) Applying stencil to theb array and a subsétteriorDomain of its do-
main yields an array, which is assigned to a subsat dihe stencil’s function object
is applied to each position in the specified subsdt.of

Before we describe how to create a stencil, we describe how to apply a stencil to an array,
yielding computed values. To compute the value associated with index position (1,3), the
stencil’s center is placed at (1,3). The stendifyperExtent andlowerExtent

functions indicate whictArray values the stencil’s function will use. See Figure 3-

3. Applying the stencil’s function catbperator() yields the computed value. To
compute multipleArray values, apply a stencil to the array and a domain object:
stencil(b, interiorDomain) . This applies the stencil to each position in

the domain. The user must ensure that applying the stencil does not access nonexistent
Array values.

53

Chapter 3. A Tutorial Introduction
Figure 3-3. Applying a Stencil to anArray

Applying a Stencil to Position (1,3}

L'FPEI.'E"EE T

o 1 1 3 3
To compute the value associated with index position (1,3) of an array, place the stencil’s
center, indicated with dashed lines, at the position (1,3). The computation involves the

array values covered by the array and delineatedpgyerExtent andlowerEx-
tent

To create a stencil object, apply ti&encil type to a function object class. For
example,Stencil<DoofNinePt> stencil declares thestencil object.

The function object class must define a function cgderator() with a container
parameter and index parameters. The number of index parameters, indicating the sten-
cil’s center, must equal the container’s dimension. For exarip@fNinePt defines
operator()(const C& c, int i, int j) . We templated the container
type C although this is not strictly necessary. The two index parametarsd] ensure

the stencil works with two-dimensional containers. TowerExtent function in-
dicates how far to the left (or below) the stencil extends beyond its center. Its parameter
indicates a particular dimension. Index parameteandj are in dimension 0 and 1.
upperExtent serves an analogous purpose. The POOMA Toolkit uses these func-
tions when distributing computation among various processors, but it does not use these
functions to ensure nonexistefitray values are not accessed. Caveat stencil user!

3.5. Distributed Array Implementation

A POOMA program can execute on one or multiple processors. To convert a program
designed for uniprocessor execution to a program designed for multiprocessor execution,
the programmer need only specify how each container's domain should be split into
“patches”. The POOMA Toolkit automatically distributes the data among the available

54

Chapter 3. A Tutorial Introduction

processors and handles any required communication among processors. Example 3-5
illustrates how to write a distributed version of the stencil program (Example 3-4).

Example 3-5. Distributed StencilArray Implementation of Doof2d

#include <iostream> // has std::cout, ...
#include <stdlib.h> // has EXIT_SUCCESS
#include "Pooma/Arrays.h"

/I has POOMA’s Array declarations

/[Doof2d: POOMA Arrays, stencil, multiple
/I processor implementation

/I Define the stencil class performing the computation.
class DoofNinePt
{
public:
/I Initialize the constant average weighting.
DoofNinePt() : weight(1.0/9.0) {}

/I This stencil operator is applied to each interior
/l domain position (i,j). The "C" template
/l parameter permits use of this stencil
/I operator with both Arrays and Fields.
template <class C>
inline
typename C::Element _t
operator()(const C& x, int i, int j) const {
return
weight *
(x.read(i+1,j+1)+x.read(i+1,)+x.read(i+1,j-1) +
x.read(i j+l)+x.read(i ,)+x.read(i ,-1) +
x.read(i-1,j+1)+x.read(i-1,))+x.read(i-1,j-1));
}

inline int lowerExtent(int) const { return 1; }
inline int upperExtent(int) const { return 1; }

private:

55

Chapter 3. A Tutorial Introduction

/I In the average, weight elements with this value.
const double weight;

k

int main(int argc, char *argv[])

{
I/l Prepare the POOMA library for execution.
Pooma::initialize(argc,argv);

/I Since multiple copies of this program may simul-
/I taneously run, we cannot use standard input and
/I output. Instead we use command-line arguments,
/I which are replicated, for input, and we use an

/I Inform stream for output. (2)

Inform output;

/I Read the program input from the command-line
/[arguments.
if (argc = 4) {
/I Incorrect number of command-line arguments.
output <<
argv[0] <<
" number-of-processors number-of-averagings"
<< " number-of-values"
<< std::endl;
return EXIT_FAILURE;
}

char *tail;

/I Determine the number of processors.
long nuProcessors;
nuProcessors = strtol(argv[l], &tail, 0);

/I Determine the number of averagings.
long nuAveragings, nulterations;
nuAveragings = strtol(argv[2], &tail, 0);
nulterations = (nuAveragings+1)/2;

/I Each iteration performs two averagings.

56

Chapter 3. A Tutorial Introduction

/I Ask the user for the number n of values along
/I one dimension of the grid.

long n;

n = strtol(argv[3], &tail, 0);

/I The dimension must be a multiple of the number
/I of processors since we are using a

/I UniformGridLayout.
n=((n+nuProcessors-1)/nuProcessors)*nuProcessors;

/Il Specify the arrays’ domains [0,n) x [O,n).
Interval<1> N(O, n-1);
Interval<2> vertDomain(N, N);

/I Set up interior domains [1,n-1) x [1,n-1)
/I for computation.

Interval<1> 1(1,n-2);

Interval<2> interiorDomain(l,l);

/I Create the distributed arrays.

/I Partition the arrays’ domains uniformly, i.e.,
/l each patch has the same size. The first para-
/I meter tells how many patches for each dimension.
/I Guard layers optimize communication between
/I patches. Internal guards surround each patch.
/I External guards surround the entire array
/I domain. (2)
UniformGridPartition<2>
partition(Loc<2>(nuProcessors, nuProcessors),
GuardLayers<2>(1), // internal
GuardLayers<2>(0)); // external
UniformGridLayout<2> layout(vertDomain, partition,
DistributedTag());

/I The Array template parameters indicate 2 dims

/[and a ’'double’ value type. MultiPatch indicates

/[multiple computation patches, i.e, distributed

/l computation. The UniformTag indicates the

/I patches should have the same size. Each patch
/I has Brick type. 3)

57

Chapter 3. A Tutorial Introduction

Array<2, double, MultiPatch<UniformTag,
Remote<Brick> > > a(layout);

Array<2, double, MultiPatch<UniformTag,

Remote<Brick> > > b(layout);

/l Set up the initial conditions.

/I All grid values should be zero except for the
/I central value.

a=>b=0.0;

/I Ensure all data-parallel computation finishes
/I before accessing a value.
Pooma::blockAndEvaluate();

b(n/2,n/2) = 1000.0;

/I Create the stencil performing the computation.
Stencil<DoofNinePt> stencil;

/I Perform the simulation.

for (int k = 0; k < nulterations; ++k) {
/I Read from b. Write to a. 4)
a(interiorDomain) = stencil(b, interiorDomain);

/I Read from a. Write to b.
b(interiorDomain) = stencil(a, interiorDomain);

}

/I Print out the final central value.
Pooma::blockAndEvaluate();

/I Ensure all computation has finished.
output <<

(nuAveragings % 2 ? a(n/2,n/2) : b(n/2,n/2))

<< std::endl;

/I The arrays are automatically deallocated.
/I Tell the POOMA library execution has finished.

Pooma::finalize();
return EXIT_SUCCESS,;

58

Chapter 3. A Tutorial Introduction

(1) Multiple copies of a distributed program may simultaneously run, perhaps each hav-
ing its own input and output. Thus, we use command-line arguments to pass input to
the program. Using alnform object ensures only one copy produces output.

(2) The UniformGridPartition declaration specifies how an array’s domain
will be partitioned, or split, into patches. Guard layers are an optimization that can
reduce data communication between patches.UhdormGridLayout dec-
laration applies the partition to the given domain, distributing the resulting patches
among various processors.

(3) The MultiPatch Engine distributes requests foArray values to the as-
sociated patches. Since a patch may associated with a different processor, its “re-
mote” Engine has typeRemote<Brick> . POOMA automatically distributes
the patches among available memories and processors.

(4) The stencil computation, whether for one processor or multiple processors, is the
same.

Supporting distributed computation requires only minor code changes. These changes
specify how each container’s domain is distributed among the available processors and
how input and output occurs. The rest of the program, including all the computations,
remains the same. When running, the POOMA executable interacts with the run-time
library to determine which processors are available, distributes the containers’ domains,
and automatically handles all necessary interprocessor communication. The same exe-
cutable runs on one or many processors. Thus, the programmer can write one program,
debugging it on a uniprocessor computer and run it on a supercomputer.

POOMA's distributed computing model separates container domain concepts from com-
puter configuration concepts. See Figure 3-4. The statements in the program indicate
how each container’s domain will be partitioned. This process is represented in the up-
per left corner of the figure. A user-specifigdrtition specifies how to split the domain

into pieces. For example, the illustrated partition splits the domain into three equal-sized
pieces along the x-dimension and two equal-sized pieces along the y-dimension. Apply-
ing the partition to the domain createatches The partition also specifies external and
internal guard layers. Ayuard layeris a domain surrounding a patch. A patch’s com-
putation only reads but does not write these guarded valuegxfamnal guard layer
conceptually surrounds the entire container domain with boundary values whose pres-
ence permits all domain computations to be performed the same way even for computed
values along the domain’s edge. Arternal guard layerduplicates values from adja-

cent patches so communication need not occur during a patch’s computation. The use
of guard layers is an optimization; using external guard layers eases programming and

59

Chapter 3. A Tutorial Introduction

using internal guard layers reduces communication among processors. Their use is not
required.

60

Chapter 3. A Tutorial Introduction
Figure 3-4. The POOMA Distributed Computation Model

Partition Contziner’s Domain Computer Configu ration
CONntainer’s
domain partition
+ Ccontexts
=+ it e
external guard lavers |
+ (1
w internal guard lavers | | [
w

patches + | H

[|

| | |1 |
patch with ' M
-
guard cells
Each context has memory and
processors to exacuts a program.
w
DistributedTag
Layout

Each context can contain several patches.

The POOMA distributed computation model creates a layout by combining a partition-

61

Chapter 3. A Tutorial Introduction

ing of the containers’ domains and the computer configuration.

The computer configuration of shared memory and processors is determined by the run-
time system. See the upper right portion of Figure 3-4oAtexts a collection of shared
memory and processors that can execute a program or a portion of a program. For exam-
ple, a two-processor desktop computer might have memory accessible to both processors
So it is a context. A supercomputer consisting of desktop computers networked together
might have as many contexts as computers. The run-time system, e.g., the Message
Passing Interface (MPI) Communications Library or the MM Shared Memory Library
(http://www.engelschall.com/sw/mm/), communicates the available contexts to the
executable. POOMA must be configured for the particular run-time system in use. See
Section 1.5.

A layout combines patches with contexts so the program can be executBis-If
tributedTag is specified, the patches are distributed among the available contexts.

If ReplicatedTag is specified, each set of patches is replicated on each context.
Regardless, the containers’ domains are now distributed among the contexts so the pro-
gram can run. When a patch needs data from another patch, the POOMA Toolkit sends
messages to the designated patch uses the message-passing library. All such communi-
cation is automatically performed by the toolkit with no need for programmer or user
input.

Incorporating POOMA'’s distributed computation model into a program requires writ-
ing very few lines of code. Example 3-5 illustrates this. Trartition declara-

tion creates &JniformGridPartition splitting each dimension of a container’s
domain into equally-sizethuProcessors pieces. The firsGGuardLayers ar-
gument specifies each patch will have copy of adjacent patches’ outermost values. This
may speed computation because a patch need not synchronize its computation with other
patches’ processors. Since each value’s computation requires knowing its surrounding
neighbors, this internal guard layer is one layer deep. The seGarardLayers
argument specifies no external guard layer. External guard layers simplify computing
values along the edges of domains. Since our program already uses only the interior
domain for computation, we do not use this feature.

Thelayout declaration createsldniformGridLayout layout. As Example 3-

5 illustrates, it needs to know a container’s domain, a partition, the computer’s contexts,
and aDistributedTag orReplicatedTag .These comprisyout 'sthree
parameters; the contexts are implicitly supplied by the run-time system.

To create a distributedrray , it should be created usingayout object and have a
MultiPatch Engine rather than using Bomain object and 8rick Engine
as we did for the uniprocessor implementations. A distributed implementation uses a

62

http://www.engelschall.com/sw/mm/

Chapter 3. A Tutorial Introduction

Layout object, which conceptually specifiesomain object and its distribution
throughout the computer. MultiPatch Engine supports computations using
multiple patches. ThelniformTag indicates the patches all have the same size. Since
patches may reside on different contexts, the second template parank&tenate. Its
Brick template parameter specifies fBagine for a particular patch on a particular
context. Most distributed programs use

MultiPatch<UniformTag, Remote<Brick>>
or
MultiPatch<UniformTag, Remote<CompressibleBrick>>

Engine s.

The computations for a distributed implementation are exactly the same as for a sequen-
tial implementation. The POOMA Toolkit and a message-passing library automatically
perform all the computation.

Input and output for distributed programs is different than for sequential programs. Al-
though the same instructions run on each context, each context may have its own input
and output streams. To avoid dealing with multiple input streams, we pass the input
via command-line arguments, which are replicated for each context. Wsfogm

streams avoids having multiple output streams print. Any context can print lle-an

form stream but only text sent to context O is displayed. At the beginning of the pro-
gram, we create alnform object namedutput . Throughout the rest of the pro-
gram, we use it instead std::cout andstd::cerr

The command to run the program is dependent on the run-time system. To use
MPI with the Irix 6.5 operating system, one can use thpirun command. For
examplempirun -np 4 Doof2d-Array-distributed -mpi 2 10

1000 invokes the MPI run-time system with four processors. Timpi option tells

the POOMA executabléoof2d-Array-distributed to use the MPI Li-

brary. The remaining arguments specify the number of processors, the number of av-
eragings, and the array size. The first and last values are the same for each dimen-
sion. For example, if three processors are specified, then the x-dimension will have
three processors and the y-dimension will have three processors, totaling nine pro-
cessors. The commambof2d-Array-distributed -shmem -np 4 2

10 1000 uses the MM Shared Memory Libraryshmem) and four processors. As

for MPI, the remaining command-line arguments are specified on a per-dimension basis
for the two-dimensional program.

63

Chapter 3. A Tutorial Introduction

3.6. Data-Parallel Field Implementation

POOMA Array s support many scientific computations, but other scientific computa-
tions require values distributed throughout space,Arrdy s have no spatial extent.
POOMA Field s, supporting a superset éirray functionality, model values dis-
tributed throughout space.

A Field consists of a set of cells distributed through space. LikAay cell, each

Field cellis addressed via indices. Unlike Anray cell, eachield cell can hold
multiple values. LikeArray s,Field s can be accessed via data-parallel expressions
and stencils and may be distributed across processors. Uktikey cells, Field

cells exist in a multidimensional volume so, e.g., distances between cells and normals to
cells can be computed.

In this section, we implement tHeoof2d two-dimensional diffusion simulation pro-
gram usingField s. This simulation does not require aRyeld -specific features,
but we present this program rather than one u§irgld -specific features to facilitate
comparison with thé\rray versions, especially Example 3-3.

Example 3-6. Data-ParallelField Implementation of Doof2d

#include <iostream> // has std::cout, ...
#include <stdlib.h> // has EXIT_SUCCESS
#include "Pooma/Fields.h"

/I has POOMA’s Field declarations ()

/I Doof2d: POOMA Fields, data-parallel implementation

int main(int argc, char *argv[])

{
/I Prepare the POOMA library for execution.
Pooma::initialize(argc,argv);

Il Ask the user for the number of averagings.
long nuAveragings, nulterations;
std::.cout<<"Please enter the number of averagings: ";
std::cin >> nuAveragings;
nulterations = (nuAveragings+1)/2;
/I Each iteration performs two averagings.

64

Chapter 3. A Tutorial Introduction

/I Ask the user for the number n of values along
/I one dimension of the grid.

long n;

std::cout << "Please enter the field size: ";
std::.cin >> n;

/I Specify the fields’ domains [0,n) x [O,n).
Interval<1> N(O, n-1);
Interval<2> vertDomain(N, N);

/' Set up interior domains [1,n-1) x [1,n-1) for
/[computation.

Interval<l> 1(1,n-2);

Interval<l> J(1,n-2);

I/l Specify the fields’ mesh, i.e., its spatial
/I extent, and its centering type. (2)
DomainLayout<2> layout(vertDomain);
UniformRectilinearMesh<2>

mesh(layout, Vector<2>(0.0), Vector<2>(1.0, 1.0));
Centering<2> cell =

canonicalCentering<2>(CellType, Continuous, AllDim);

I/l Create the fields.

/I The Field template parameters indicate a mesh, a

// 'double’ value type, and ordinary 'Brick’

/I storage. 3)

Field<UniformRectilinearMesh<2>, double, Brick>
a(cell, layout, mesh);

Field<UniformRectilinearMesh<2>, double, Brick>
b(cell, layout, mesh);

/[Set up the initial conditions.

/I All grid values should be zero except for the
/I central value.

a=>b=0.0;

/I Ensure all data-parallel computation finishes
/I before accessing a value.
Pooma::blockAndEvaluate();

b(n/2,n/2) = 1000.0;

65

Chapter 3. A Tutorial Introduction

/I In the average, weight elements with this value.
const double weight = 1.0/9.0;

/I Perform the simulation.
for (int k = 0; k < nulterations; ++k) {
/I Read from b. Write to a. 4)
a(l,J) = weight *
(b(1+1,J+1) + b(I+1,J) + b(I+1,J-1) +
b0 ,J+1) + b(l J) + b(l ,J1) +
b(I-1,J+1) + b(l-1,J) + b(l-1,J-1));

/I Read from a. Write to b.
b(l,J) = weight *
(a(+1,J+1) + a(I+1,J) + a(1+1,J-1) +
a(ll J+1) +a(l J)+ a(l ,J1) +
a(l-1,J+1) + a(I-1,J) + a(l-1,3-1));
}

/I Print out the final central value.
Pooma::blockAndEvaluate();

/I Ensure all computation has finished.
std::cout <<

(nuAveragings % 2 ? a(n/2,n/2) : b(n/2,n/2))

<< std::endl;

/I The fields are automatically deallocated.

/I Tell the POOMA library execution has finished.
Pooma::finalize();
return EXIT_SUCCESS;

(1) To useField s, thePooma/Fields.h must be included.

(2) These statements specify the spacing and numbleredél values. First, a layout
is specified. Then, a mesh, which specifies the spacing between cells, is created. The
Field s centering specifies one cell-centered value per cell.

(3) Field s first template parameter specifies the type of mesh to use. The other tem-
plate parameters are similar farray 's. The constructor arguments specify the

66

Chapter 3. A Tutorial Introduction

Field 's centering, its domain of cells, and a mesh specifying the cells’ spatial
arrangement.

(4) The computation foField s isthe same as fékrray s because this example does
not use any-ield -specific features.

As mentioned above, the fundamental difference betwggay s andField sis the

latter has cells and meshes. TRield declarations reflect this. To declaré-eeld ,

the Pooma/Fields.h header file must be included. Rield ’'s domain consists of a

set of cells, sometimes called positions when referringitkay s. As forArray s, a

Field ’s domain and its layout must be specified. Since the above program is designed
for uniprocessor computation, specifying the domain specifies the laydaield s
meshspecifies its spatial extent. For example, one can ask the mesh for the distance
between two cells or for the normals to a particular cell. Cells ldraformRec-
tilinearMesh all have the same size and are parallelepipeds. To create the mesh,
one specifies the layout, the location of the spatial point corresponding to the lower, left
domain location, and the size of a particular cell. Since this program does not use mesh
computations, our choices do not matter. We specify the domain’s lower, left corner as
spatial location (0.0, 0.0) and each cell's width and height as 1. Thus, the middle of the
cell at domain position (3,4) is (3.5, 4.5).

A Field cell can contain one or more values although each cell must have the same
arrangement of values. For this simulation, we desire one value per cell so we place
that position at the cell's center, i.e., a cell centering. T@aonicalCentering

function returns such a centering. .

A Field declaration is analogous to aray declaration but must also specify

a centering and a mesh. In Example 3-3, &¢ay declaration specifies the array’s
dimensionality, the value type, tHengine type, and a layoutfField declarations
specify the same values. Its first template parameter specifies the mesh’s type, which
includes an indication of its dimensionality. The second and third template parameters
specify the value type and tHengine type. Since & ield has a centering and a
mesh in addition to a layout, those arguments are also necessary.

Field operations are a superset Afray operations so théoof2d compu-
tations are the same as in Example 3F3eld accesses require parentheses, not
square brackets, and accesses to individual values should be preceded by calls to
Pooma::blockAndEvaluate

To summarizeField s support multiple values per cell and have spatial extent. Thus,
their declarations must specify a centering and a mesh. Otherwksieléh program
is similar to one usind\rray s.

67

Chapter 3. A Tutorial Introduction
3.7. Distributed Field Implementation

A POOMA program usind-ield s can execute on one or more processors. In Sec-
tion 3.5, we demonstrated how to modify a uniprocessor sté&rcay implementa-

tion to run on multiple processors. In this section, we demonstrate that the uniprocessor
data-paralleField implementation of the previous section can be similarly converted.
Only the container declarations change; the computations do not. Since the changes are
exactly analogous to those in Section 3.5, our exposition here will be shorter.

Example 3-7. Distributed Data-ParallelField Implementation of Doof2d

#include <stdlib.h> // has EXIT_SUCCESS
#include "Pooma/Fields.h"
// has POOMA'’s Field declarations

/I Doof2d: POOMA Fields, data-parallel, multiple
/I processor implementation

int main(int argc, char *argvl[])

{
I/l Prepare the POOMA library for execution.
Pooma::initialize(argc,argv);

/I Since multiple copies of this program may

/I simultaneously run, we canot use standard input
/[and output. Instead we use command-line

/[arguments, which are replicated, for input, and we
/I use an Inform stream for output. (2)
Inform output;

/I Read the program input from the command-line arguments.
if (argc '= 4) {
/I Incorrect number of command-line arguments.
output << argv[0] <<
" number-of-processors number-of-averagings"
<< " number-of-values"
<< std::endl,
return EXIT_FAILURE;

68

Chapter 3. A Tutorial Introduction

char *tail;

/I Determine the number of processors.
long nuProcessors;
nuProcessors = strtol(argv[l], &tail, 0);

/I Determine the number of averagings.
long nuAveragings, nulterations;
nuAveragings = strtol(argv[2], &tail, 0);
nulterations = (nuAveragings+1)/2;

/[Each iteration performs two averagings.

/I Ask the user for the number n of values along

/I one dimension of the grid.

long n;

n = strtol(argv[3], &tail, 0);

/I The dimension must be a multiple of the number of
/I processors since we are using a UniformGridLayout.
n = ((n+nuProcessors-1) / nuProcessors) * nuProcessors;

/I Specify the fields’ domains [0,n) x [O,n).
Interval<1> N(O, n-1);
Interval<2> vertDomain(N, N);

/I Set up interior domains [1,n-1) x [1,n-1) for
/I computation.

Interval<1> 1(1,n-2);

Interval<1> J(1,n-2);

/I Partition the fields’ domains uniformly, i.e.,
I/l each patch has the same size. The first parameter
/I tells how many patches for each dimension. Guard
/I layers optimize communication between patches.
/I Internal guards surround each patch. External
/I guards surround the entire field domain. (2)
UniformGridPartition<2>
partition(Loc<2>(nuProcessors, nuProcessors),
GuardLayers<2>(1), // internal
GuardLayers<2>(0)); // external
UniformGridLayout<2>

69

Chapter 3. A Tutorial Introduction
layout(vertDomain, partition, DistributedTag());

/I Specify the fields’ mesh, i.e., its spatial
/I extent, and its centering type. 3)
UniformRectilinearMesh<2>

mesh(layout, Vector<2>(0.0), Vector<2>(1.0, 1.0));
Centering<2> cell =

canonicalCentering<2>(CellType, Continuous, AlIDim);

/I The Field template parameters indicate a mesh and
/[a 'double’ value type. MultiPatch indicates
/[multiple computation patches, i.e., distributed
/l computation. The UniformTag indicates the patches
/I should have the same size. Each patch has Brick
Il type. (4)
Field<UniformRectilinearMesh<2>, double,
MultiPatch<UniformTag, Remote<Brick>>>
a(cell, layout, mesh);
Field<UniformRectilinearMesh<2>, double,
MultiPatch<UniformTag, Remote<Brick>>>
b(cell, layout, mesh);

/I Set up the initial conditions.

/[All grid values should be zero except for the
/I central value.

a=>b = 00;

/I Ensure all data-parallel computation finishes
/I before accessing a value.
Pooma::blockAndEvaluate();

b(n/2,n/2) = 1000.0;

I/l In the average, weight elements with this value.
const double weight = 1.0/9.0;

/l Perform the simulation.
for (int k = 0; k < nulterations; ++k) {
/I Read from b. Write to a.
a(l,J) = weight *
(b(1+1,J+1) + b(I+1,J) + b(I+1,3-1) +
b(lI J+1) + b(l ,J) + b(l ,J-1) +

70

Chapter 3. A Tutorial Introduction
b(-1,J+1) + b(-1,J) + b(l-1,J-1));

/I Read from a. Write to b.
b(1,J) = weight *
(a(+1,J+1) + a(l+1,J) + a(l+1,J-1) +
a(l J+1) + a(l ,J) + a(l ,J-1) +
a(l-1,J+1) + a(l-2,J) + a(I-1,J3-1));
}

/I Print out the final central value.
Pooma::blockAndEvaluate();

/I Ensure all computation has finished.
output <<

(nuAveragings % 2 ? a(n/2,n/2) : b(n/2,n/2))

<< std::endl;

/I The fields are automatically deallocated.

/I Tell the POOMA library execution has finished.
Pooma::finalize();
return EXIT_SUCCESS;

(1) Multiple copies of a distributed program may simultaneously run, perhaps each hav-
ing its own input and output. Thus, we use command-line arguments to pass input to
the program. Using alnform stream ensures only one copy produces output.

(2) The UniformGridPartition declaration specifies how an array’s domain
will be partitioned, or split, into patches. Guard layers are an optimization that can
reduce data communication between patches.héormGridLayout dec-
laration applies the partition to the given domain, distributing the resulting patches
among various processors.

(3) The mesh and centering declarations are the same for uniprocessor and multiproces-
sor implementations.

(4) The MultiPatch Engine distributes requests fdfield values to the asso-
ciated patch. Since a patch may associated with a different processor, its “remote”
engine has typRemote<Brick> . POOMA automatically distributes the patches
among available memories and processors.

71

Chapter 3. A Tutorial Introduction

This program can be viewed as the combination of Example 3-6 and the changes to
form the distributed stencil-basédray program from the uniprocessor stencil-based
Array program.

- Distributed programs may have multiple processes, each with its own input and out-
put streams. To pass input to these processes, this programs uses command-line argu-
ments, which are replicated for each processliorm stream accepts data from
any context but prints only data from context O.

- A layout for a distributed program specifies a domain, a partition, and a context map-
per. ADistributedTag context mapper tag indicates that pieces of the domain
should be distributed among patches, whilReplicatedTag context mapper
tag indicates the entire domain should be replicated to each patch.

- A MultiPatch Engine supports the use of multiple patches, whilkeanote
engine supports computation distributed among various contexts. Both are usually
necessary for distributed computation.

« The computation for uniprocessor or distributed implementations remains the same.
The POOMA Toolkit automatically handles all communication necessary to ensure
up-to-date values are available when needed.

- The command to invoke a distributed program is system-dependent. For ex-
ample, thempirun -np 4 Doof2d-Field-distributed -mpi 2
10 1000 command might use MPI communication.

Doof2d-Field-distributed -shmem -np 4 2 10 1000

might use the MM Shared Memory Library.

72

Chapter 4. Overview of POOMA
Concepts

In the previous chapter, we presented several different implementations@étied
simulation program. The implementations illustrate the various containers, computa-
tion modes, and computation environments that POOMA supports. In this chapter, we
describe the concepts associated with each of these three categories. Specific details
needed for their use are deferred to later chapters.

The most important POOMA concepts can be grouped into three separate categories:

containers

data structures holding one or more values and usually accessed using indices

computation modes

styles of expressing computations and accesses to container values

computation environment
description of resources for computing, e.g., single processor or multiprocessor.

Table 4-1 categorizes the POOMA concepts. Many POOMA programs select one pos-
sibility from each category. For example, Example 3-4 uégtay containers and
stencils for sequential computation, while Example 3-7 useld containers and
data-parallel statements with distributed computation. A program may use multiple con-
tainers and various computation modes, but the computation environment is either dis-
tributed or not.

Table 4-1. POOMA Concepts

Computation

Container Computation Modes Environment
Array element-wise sequential
DynamicArray data-parallel distributed
Field stencil-based
Tensor relational
TinyMatrix
Vector

73

Chapter 4. Overview of POOMA Concepts

In the rest of this chapter, we explore these three categories. First, we describe POOMA
containers, illustrating the purposes of each, and explaining the concepts needed to de-
clare them. Then, we describe the different computation modes and distributed compu-
tation concepts.

4.1. POOMA Containers

Most POOMA programs useontainersto store groups of values. POOMA containers

are objects that store other objects such as numbers or vectors. They control allocation
and deallocation of these stored objects and access to them. They are a generalization
of C arrays, but POOMA containers are first-class objects so they can be used directly

in expressions. They are also similar to C++ containers susteator |, list , and

stack . See Table 4-2 for a summary of the containers.

This section describes many concepts, but one need not understand them all to begin
programming with the POOMA Toolkit. First, we introduce the different POOMA'’s
containers and describe how to choose an appropriate one for a particular task. Figure
4-1 indicates which concepts must be understood when declaring a particular container.
All of these concepts are described in Section 4.1.2 and Section 4.1.3. Use this figure
to decide which concepts in the former are relevant. Reading the latter section is neces-
sary only if computing using multiple processors. The programs in the previous chapter
illustrate many of these concepts.

Table 4-2 briefly describes the six POOMA containers. They are more fully described in
the paragraphs below.

Table 4-2. POOMA Container Summary

Array container mappinghdicesto values and
that may be used in expressions

DynamicArray one-dimensionafrray whosedomain
can be dynamically resized

Field container mappinghdicesto one or more
values and residing in multidimensional
space

Tensor multidimensional mathematical tensor

TinyMatrix two-dimensional mathematical matrix

Vector multidimensional mathematical vector

A POOMA Array generalizes a C array and mapsicesto values. Given an index

74

4.1.1.

Chapter 4. Overview of POOMA Concepts

or position in anArray s domain, it returns the associated value, either by returning

a stored value or by computing it. The use of indices, which are usually ordered tu-
ples, permits constant-time access although computing a particular value may require
significant time. In addition to the functionality provided by C arrays,Alleay class
automatically handles memory allocation and deallocation, supports a wider variety of
assignments, and can be used in expressions. For example, the addition of two arrays can
be assigned to an array and the product of a scalar element and an array is permissible.

A POOMA DynamicArray extendsArray capabilities to support a dynamically-
changing domain but is restricted to only one dimension. WheDgr@amicArray
is resized, its values are preserved.

A POOMAField isanArray with spatial extent. Each domain consistsefls in

one-, two-, or three-dimensional space. Although indexed similarkn@y s, each

cell may contain multiple values and multiple materialsFfeld ’'s meshstores its
spatial characteristics and can yield, e.g., the cell at a particular point, the distance be-
tween two cells, or a cell’s normals. Aield should be used whenever geometric or
spatial computations are needed, multiple values per index are desired, or a computation
involves more than one material.

A Tensor implements a multidimensional mathematical tensor. Since it is a first-class
type, it can be used in expressions such as addingl®&sor s.

A TinyMatrix implements a two-dimensional mathematical matrix. Since it is a
first-class type, it can be used in expressions such as assignments to matrices and multi-
plying matrices.

A Vector implements a multidimensional mathematical vector, which is an ordered
tuple of components. Since it is a first-class type, it can be used in expressions such as
adding twoVector s and multiplying al'inyMatrix ~ and aVector

The data of arArray , DynamicArray , or Field can be accessed using more
than one container by taking a view.\Aew of an existing container C is a container
whose domain is a subset of C's domain. The subset can equal the original domain.
A view acts like a reference in that changing any of the view's values also changes
the original container’s and vice versa. While users sometimes explicitly create views,
they are perhaps more frequently created as temporaries in expressions. For example, if
Ais anArray andl is a domainA(l) - A(l-1) uses two views to form the
difference between adjacent values.

Choosing a Container

The two most commonly used POOMA containers Areay s andField s, while

75

4.1.2.

Chapter 4. Overview of POOMA Concepts

Vector , TinyMatrix , andTensor represent mathematical objects. Table 4-3
contains a decision tree describing how to choose an appropriate container.

Table 4-3. Choosing a POOMA Container

If modeling mathematical entries, us&/actor , TinyMatrix , or
Tensor .

If indices and values reside in use aField

multidimensional spac#a,

If there are multiple values per index, useield

If there are multiple materials use aField

participating in the same computation,

If the domain’s size dynamically changesise aDynamicArray
and is one-dimensional,

Otherwise use aArray .

Declaring Sequential Containers

In the previous sections, we introduced the POOMA containers and described how to
choose one appropriate for a given task. In this section, we describe the concepts in-
volved in declaring them. Concepts specific to distributed computation are described in

the next section.

Figure 4-1 illustrates the containers and the concepts involved in their declarations. The
containers are listed in the top row. Lines connect these containers to the components
necessary for their declarations. For exampleAaray declaration requires an engine

and a layout. These, in turn, can depend on other POOMA concepts. Declarations nec-
essary only for distributed, or multiprocessor, computation are also indicated. Given a

desired container, one can use this figure to determine the concepts needed to declare a

particular container.

76

Chapter 4. Overview of POOMA Concepts

Figure 4-1. Concepts For Declaring Containers

51 pport views
_Fi=ld
— - - I'.

e , = " -
- |, o -

T enging e mesh Cceéntering

layout corner position ¢zl size

Teascor _ TiayMatrimx Vector DynamicArray Array

-

domain partition context mapper tag

guard layver
mmltiprocessor computation only

An enginestores and, if necessary, computes a container’s values. A container has one
or more engines. The separation of a container from its storage permits optimizing a
program’s space and time requirements. For example, a container returning the same
value for all indices can use a constant engine, which need only store one value for the
entire domain. ACompressibleBrick Engine reduces its space requirements

to a constant whenever all its values are the same. The separation between a container
and its engine also permits taking views of containers without copying storage.

Figure 4-2.Array and Field Mathematical and Computational Concepts

mathematical concept computational implementaticn
[OCE5 5005
| lavout = F
o : memaory .
Array: index |engine *value
- processors
| lavout [+ i
o : MEMmory —
Field: index engine = value
Field: indices mesh = spatial value

A layoutmaps domairnndicesto the processors and computer memory used by a con-
tainer’s engines. See Figure 4-2. A program computes a container’s values using these
processors and memory. The layout specifies the processors and memory to use for each
particular index. A container’s layout for a uniprocessor implementation consists of its

77

4.1.3.

Chapter 4. Overview of POOMA Concepts

domain, the processor, and its memory. For a multiprocessor implementation, the layout
maps portions of the domain to (possibly different) processors and memory.

A domainis a set of points on which a container can define values. There are several
different types of domains. Amterval consists of all integral points between two end-
points. Itis frequently represented using mathematical interval notation [a,b]; it contains
only the integral points, e.g., a, a+1, a+2, ..., b. The concept is generalized to multiple
dimensions by forming direct products of intervals, i.e., all the integral tuples in an n-
dimensional space. For example, the two-dimensional containers in the previous chapter
are defined on a two-dimensional domain with the both dimensions’ spanning the in-
terval [O,n). A domain need not contain all integral points between its endpoints. A
strideindicates a regular spacing between pointgaAgeis a subset of an interval of
regularly-spaced points specified by a stride.

A Field ’s mestmaps domain indices to spatial value$ifisuch as distances between
cells, edge lengths, and normals to cells. In other words, it providiésld s spatial
extent. See also Figure 4-2. Different mesh types may support different spatial values.

A mesh’scorner positionspecifies the point iR corresponding to the cell in the lower,
left corner of its domain. Combining this, the domain, and the cell size can specify the
mesh’s map from indices ®°.

A mesh'scell sizespecifies the spatial dimensions ofgeld cell, e.g., its width,
height, and depth, ifk®. Combining this, the domain, and the corner position can specify
the mesh’s map from indices f&°.

Declaring Distributed Containers

In the previous section, we introduced the important concepts for declaring containers
for use on uniprocessor computers. When using multiprocessor computers, we augment
these concepts with those for distributed computation. Reading this section is important
only for running a program on multiple processors. Many of these concepts were in-
troduced in Section 3.5 and Section 3.7. Figure 3-4 illustrates the POOMA distributed
computation model. In this section, we concentrate on the concepts necessary to declare
a distributed container.

As we noted in Section 3.5, a POOMA programmer must specify how each container’s
domain should be distributed among the available processors and memory spaces. Us-
ing this information, the toolkit automatically distributes the data among the available
processors and handles any required communication among them. The three concepts
necessary for declaring distributed containers are a partition, a guard layer, and a con-
text mapper tag.

78

Chapter 4. Overview of POOMA Concepts

A partition specifies how to divide a container’s domain into distributed pieces. For
example, the partition illustrated in Figure 3-4 would divide a two-dimensional domain
into three equally-sized pieces along the x-dimension and two equally-sized pieces along
the y-dimension. Partitions can be independent of the size of container's domain. The
example partition will work on any domain as long as the size of its x-dimension is a
multiple of three. A domain is separated into disjoint patches.

A guard layersurrounds each patch with read-only values. éxternal guard layer
specifies values surrounding the entire domain. Its presence eases computation along the
domain’s edges by permitting the same computations as for more-internal computations.
An internal guard layerduplicates values from adjacent patches so communication with
adjacent patches need not occur during a patch’s computation. The use of guard layers
IS an optimization; using external guard layers eases programming and using internal
guard layers reduces communication among processors. Their use is not required.

A context mappeindicates how a container’s patches are mapped to processors and
shared memory. For example, tRistributedTag indicates that the patches
should be distributed among the processors so each patch occurs once in the entire
computation. ThdReplicatedTag indicates that the patches should be replicated
among the processors so each processing unit has its own copy of all the patches. While
it could be wasteful to have different processors perform the same computation, repli-
cating a container can reduce possibly more expensive communication costs.

4.2. Computation Modes

POOMA computations can be expressed using a variety of modes. Many POOMA com-
putations involveArray or Field containers, but how their values are accessed and
how the associated algorithms use them varies. For example, element-wise computation
involves explicitly accessing a container’s values. A data-parallel computation operates
on larger subsets of a container’s values. Stencil-based computations express a compu-
tation as repeatedly applying a local computation to each element of an array. Relation-
based computations use relations on containers to establish dependencies among them so
the values of one container are updated whenever any other’s values change. A program
may use any or all of these styles, which are described below.

Element-wisecomputation accesses individual container values through explicit nota-
tion. For example, values in a two-dimensional container C might be referenced as
C(3,4) orC(i,j+1) . Thisis the usual notation for non-object-oriented languages
such as C.

79

Chapter 4. Overview of POOMA Concepts

Data-parallel computation uses expressions to access subsets of a container’s values.
For example, in Example 3-3&(l,J) represents the subset Afray a ’s values
having coordinates in the domain specified by the direct product of one-dimensional
Interval sl andJ. Using data-parallel expressions frequently eliminates the need
for writing explicit loops.

Stencil-based computation usgencilsto compute containers’ values using neighbor-

ing data values. Each stencil consists of a specification of which neighboring values to
read and a function using those values. For example, an averaging stencil may access
all its adjacent neighbors, averaging them. In POOMA, we represent a stencil using a
function object with additional functions indicating which neighboring values are used.
Stencil computations are frequently used in solving partial differential equations, image
processing, and geometric modeling.

Relation-based computation usekationsto create dependences among containers such
the dependent container’s values are updated when its values are needed and any of its
related containers’ values have changed. A relation is specified by a dependent container,
independent containers, and a function computing the dependent container’s values us-
ing the independent containers’ values. To avoid excess computation, the dependent
container’s values are computed only when needed, e.g., for printing the container or for
computing the values of another dependent container. Thus, this computation is some-
times called “lazy evaluation”.

4.3. Computation Environment

The same POOMA program can execute on a wide variety of computers. The default
sequential computing environmecnsists of one processor and its associated mem-
ory, as found on a personal computer. In contraslis&ributed computing environment

may have multiple processors and multiple distributed or shared memories. For exam-
ple, some desktop computers have dual processors and shared memory, while a large
supercomputer may have thousands of processors, perhaps with groups of eight sharing
the same memory.

Using distributed computation requires three things:

1. The program must declare how container domains will be distributed.
2. POOMA must be configured to use a communications library.

3. The POOMA executable must be run using the communications library.
All of these were illustrated in Section 3.5 and Section 3.7. Figure 3-4 illustrates the

80

Chapter 4. Overview of POOMA Concepts

POOMA distributed computation model. Section 4.1.3 described how to declare con-
tainers with distributed domains. Here we present three concepts for distributed compu-
tation: patches, context, and a communication library.

A partition divides a container’s domain into disjopatctes. For distributed computa-
tion, the patches are distributed among various processors, which compute the associated
values. As illustrated in Figure 3-4, each patch can be surrounded by guard layers.

A contextis a collection of shared memory and processors that can execute a program
or a portion of a program. It can have one or more processors, but all these processors
must access the same shared memory. Usually the computer and its operating system,
not the programmer, determine the available contexts.

A communication librarypasses messages among contexts. POOMA uses the commu-
nication library to copy information among contexts, all of which is hidden from both
the programmer and the user. POOMA works with the Message Passing Interface (MPI)
Communications Library and the MM Shared Memory Library. See Section 1.5 for de-
tails.

81

Chapter 5. Array Containers

A container is an object holding objecrray s are one of the two most widely used
POOMA containers since they model the mathematical concept of mapping from do-
main indices to values. POOMArray s extend built-in C++ arrays by supporting a
wider variety of domains, automatically handling memory allocation, and having first-
class status. For example, they may be used as operands and in assignments. In this
chapter, we introduce the concept of containers, the mathematical concept of arrays,
and the POOMA implementation &rray s. Before illustrating how to declavgr-

ray s, we introducddomain s, which specify the sets of indices. After describing how

to declare the various types Diomain s, we describe how to declare and égeay s.

5.1. Containers

A container classs a class whose main purpose is to hold objects. These stored objects,
called container valuer more simply “values” or “elements”, may be accessed and
changed, usually using indices. “Container class” is usually abbreviated as “container”.

The six POOMA containers can be categorized into two groups. Mathematical contain-
ers includeTensor s, TinyMatrix s, andVector s, which model tensors, ma-
trices, and vectors, respectively. Storage containers indutgy s, DynamicAr-

ray s, andField s. In this chapter, we focus on simplest of theAeray s. Dy-
namicArray s are also described.

C has built-in arrays, and the C++ Standard Library provideaps, vector s,

stack s, and other containers, but the POOMA containers better model scientific com-
puting concepts and provide more functionality. They automatically handle memory al-
location and deallocation and can be used in expressions and on the left-hand side of
assignments. Since POOMA containers separate the concepts of accessing and using
values from the concept of storing values, value storage can be optimized to specific
needs. For example, if most of &rray s values are known to be identical most of the
time, a compressible engine can be used. Whenever all the array’s values are identical, it
stores only one value. At other times, it stores all the values. Engines will be discussed
in Chapter 6.

5.2. Array s

Mathematically, an array maps domain indices to values. Usually, the domain consists of

82

Chapter 5Array Containers

a one-dimensional integral interval or it may be a multidimensional domain. POOMA’s
Array container class implements this idea. Given an index, i.e., a positionAi-an

ray 's Domain, it returns the associated value, either by returning a stored value or by
computing it. The indices are usually integral tuples but need not be zero-based or even
consist of all possible integral tuples in a multidimensional range. Using indices per-
mits constant-time access to values although computing a particular value may require
significant time.

POOMA Array s arefirst-class objectso they can be used more easily than built-in
C++ arrays. For exampld\rray s can be used as operands and in assignment state-
ments. The statemeat = a + b; adds corresponding valuesAfray sa andb,
assigning the sums to tifgray a . The statement treats each array as an object, rather
than requiring the use of one or more loops to access individual values. Data-parallel
statements such as this are further discussed in Chagieraly s also handle their own
memory allocation and deallocation. For example Aneay declaratiorArray<2,

double, Brick> a(vertDomain) creates arArray a , allocating what-

ever memory it needs. Whengoes out of scope, it and its memory are automatically
deallocated. Automatic memory allocation and deallocation also eases copying.

Individual Array values can be accessed using parentheses, not square brackets, as
for C++ arrays. For exampl@(3,4) yields the value at position (3,4) @f's two-
dimensional domain.

5.3. Domains

A domainspecifies the set of points on which an array can define values. These indices
are the arguments placed within parentheses to select particular values, as described pre-
viously. A domain supported both ray s and by built-in C++ arrays is the interval
[0,n-1] of integers containing all integers {0, 1, 2, ..., n-1}. For C++, every integer in the
interval must be included, and the minimum index must be zero. POOMA expands the
set of permissible domains to support intervals with nonzero minimal indices, nonzero
strides, and other options.

In POOMA, Domain classes implement domains. There are four different categories:

Loc

Domain with a single point.

83

Chapter 5Array Containers
Interval

Domain with an integral interval [a,b].

Range
Domain with an integral interval [a,b] and an integral stride s indicating the gap
between indices: {a, ats, a+2s, ..., b}.

Grid

Domain with an ascending or descending sequence of integral values. The se-
guence elements must be individually specified.

One-dimensional and multidimensional versions of the categories are supported. A mul-
tidimensionalDomain consists of the direct product of one-dimensioBalmain s.

For example, the first dimension of a two-dimensional interval [0,3]x[2,9] is the inter-
val [0,3], and its second dimension is the interval [2,9]. Its indices are ordered pairs such
as (0,2), (0,3), (1,2), (1,9), and (3,7).

Many domains can be represented using domain triplets. That denain triplet
[begin :end:stride] represents the mathematical set {begin, begin + stride, begin
+ 2stride, ..., end}, wherend is in the set only if it equalbegin plus some integral
multiple of stride . If the stride is negative, its beginning inddxegin should

at least be as large end if the interval is to be nonempty. The stride can be zero only if
begin andend are equal. There are lots of ways to represent an empty interval, e.g.,
[1:0:1] and [23,34,-1], and POOMA will accept them, but they are all equivalent. The
domain triplet notation is easily extended to multiple dimensions by separating differ-
ent dimension’s intervals with commas. For example, [2:4:2,6:4:-2] contains (2,6), (2,4),
(4,6), and (4,4).

All the Domain categories listed above excerid can be represented using do-
main triplet notation. Since the triplet [7:7:1] represents {7}, or more simply 7, it can
also represent the one-dimensiohalc<1>(7) . MultidimensionalLocC s are simi-
larly represented. For example, [0:0:1,10:10:1,2:2:1] repres¢snus3>(0,10,2)

but it is frequently abbreviated as [0,10,2]. Kiterval [a,b] has unit stride: [a:b:1],
while aRange has specific stride s, e.g., [a:b:s].

Domains can be constructed by combinidigomains with smaller dimension.
For example, since a two-dimensionkdterval is the direct product of two
one-dimensionalnterval s, it can be specified using two one-dimensiolral
terval s. For examplelnterval<2>(Interval<1>(2,3), Inter-

val<1>(4,5)) creates a [2:3:1,4:5:1Pomain. The resulting dimensionality
equals the sum of the components’ dimensions. For example, a four-diméraion
can be specified using three- and one-dimen4iog s or using four one-dimension

84

5.3.1.

Chapter 5Array Containers

Loc s. If fewer dimensions than the created object’s dimensionality, the last dimensions
are unspecified and uninitializeHoc s, Interval s, Ranges, andGrid s can all
be composed from smaller similar components.

A Domain can be composed from smaller components with different types. A
Loc object can be constructed from otHenc objects and integerdnterval s,
Ranges, andGrid s can be constructed using any of these tyhes s, and integers.
For example,Interval<3> a(Loc<2>(1,2), Interval<1>(3,5))

uses a two-dimensionaLoc and a one-dimensionalnterval to create a
[1:1:1,2:2:1,3:5:1Domain . During creation of &omain, the type of each object is
changed to th®omain's type. In the exampld,0c<2>(1,2) s first converted to
aninterval

Domains can participate in some arithmetic and comparison operations. For exam-
ple, aDomain’s triplet can be shifted two units to the right by adding two. Multiply-

ing aDomain by two multiplies its triplet’s beginnings, endings, and strides by two.
POOMA users rarely need to compdd®main s, but we describe operating with the
less-than operator dmterval s:Interval d1 < Interval d2 if the length

of d1’s interval is less thanl2's or, if equal, its beginning value is small@omain
arithmetic is frequently used with data-parallel statements and container views. These
will be discussed in Chapter 7 and Chapter 8.

The current POOMA implementation suppo@®main s with dimensionality between

one and seven, inclusive. Since most scientific computations use one, two, or three di-
mensions, this is usually sufficient. If more dimensions than seven are needed, they can
be added to the source code.

Declaring Domains

SinceDomains are mainly used to declare container domains, we focus on declar-
ing Domain s, deferring most discussion of their use. We subsequently describe a few
Domain operations but most, including arithmetic operations Wthmain s, are de-
scribed in Chapter 8.

All Domain declarations require a dimension template paranigtdis positive in-
teger specifies the number of dimensions, i.e., rank, oDdbeain and determines
the length of the tuples for points in tHi@omain. For example, a three-dimensional
Domain contains ordered triples, while a one-dimensioBaimain contains sin-
gletons, or just integers. MultidimensionBlomains are just the direct products of
one-dimensiondDomain s so the techniques for declaring one-dimensi@aain s
carry over to multidimensional ones.

85

Chapter 5Array Containers

To declare &omain, one must include thBooma/Domains.h header file. However,
most POOMA programs ud@omain s when constructing containers. The storage con-
tainer header files automatically incluBeoma/Domains.h SO no explicit inclusion is
usually necessary.

5.3.1.1. Locs

A Loc<D> is aDomain with just a singleD-dimensional point. Although it is in-
frequently used as a container's domain, it is used to refer to a single point within
another domain. Its beginning and ending points are the same, and its stride is one.
One-dimensiondLoc s and integers are frequently interchanged.

Table 5-1. Declaring One-Dimensional.ocC s

constructor result

Loc<1>() indicates zero.

Loc<1>(const creates an uninitializedoc<1> , to be

Pooma::Nolnit& no) assigned a value later.

Loc<1>(const DT1& tl) creates d. 0c<1> with the integer
converted from1 .

Loc<1>(const DT1& t1, creates . 0c<1> with the integer

const DT2& t2) converted frontl .t2 must equatl .

Loc<1>(const DT1& t1, creates d.0c<1> with the integer

const DT2& t2, const DT3& converted fromtl . t2 must equatl ,

t3) andt3 is ignored.

DT1, DT2 andDT3are template

parameters.

Constructors for one-dimensionhbcC s appear in Table 5-1. The empty constructor
yields the zero point. The constructor takind?@aoma::Init object does not ini-
tialize the resultingLoc to any particular value. Presumably, the value will be as-
signed later. For smalDomains such ad.oc s, the time savings from not initializ-

ing is small, but the functionality is still available. The constructor taking one argument
with type DT1 converts this argument to an integer to specify the point. The template
typeDT1may be any type that can be converted to an integerf®og@l, ,char ,int |,
ordouble . The constructors taking two and three arguments of templatized types fa-
cilitate converting arinterval<1> and aRange<1> into aLoc<1>. Since a

Loc represents a single point, theterval ’s or Range’s first two arguments must

be equal. The stride is ignored. Again, the templatized types may be any type that can

86

be converted into an integer.

Chapter 5Array Containers

Table 5-2. Declaring Multidimensional LOC s

constructor

Loc<D>()

Loc<D>(const
Pooma::Nolnit& no)
Loc<D>(const DT1& tl)

Loc<D>(const DT1& t1,
const DT2& t2)
Loc<D>(const DT1& t1,
const DT2& t2, const DT3&
t3)

Loc<D>(const DT1& t1,
const DT2& t2, const DT3&
t3, const DT4& t4)
Loc<D>(const DT1& t1,
const DT2& t2, const DT3&
t3, const DT4& t4, const
DT5& t5)

Loc<D>(const DT1& t1,
const DT2& t2, const DT3&
t3, const DT4& t4, const
DT5& t5, const DT6& t6)
Loc<D>(const DT1& t1,
const DT2& t2, const DT3&
t3, const DT4& t4, const
DT5& t5, const DT6& t6,
const DT7& t7)

result

indicates zero.

creates an uninitializedoc , to be
assigned a value later.

creates d.0c using the giverDomain
object.

creates 4.0C using the giveDomain
objects.

creates d.0c using the giverDomain
objects.

creates 4.0C using the giveDomain
objects.

creates 4.0C using the giveDomain

objects.

creates d.0c using the giverDomain
objects.

creates d.0Cc using the giverDomain
objects.

Dindicates thd.oc 's dimensionDT1,
DT2, ... are template parameters.

Constructors for multidimension&loc s appear in Table 5-2D indicates the_ocC'’s
dimension. The first two constructors are similalioc<1> s first two constructors,
returning a representation of the zero point and returning an uninitialized point. The
seven other constructors create@c using otheDomain objects. Thes®omain
objects, having type®T1, ..., DT7, can have any type that can be converted into

87

Chapter 5Array Containers

an integer, to d.oc<1>, or to a multidimensionaDomain object that itself can

be converted into &0cC . The total dimensionality of all the arguments’ types should
be at mosD. For exampleLoc<5>(Range<1>(2,2,2), Loc<2>(2,3),
Interval<1>(4,4)) creates a five-dimensionéloc [2,2,3,4,1] using a one-
dimensionalRange, a two-dimensionalLoc, and a one-dimensiondhterval

The final fifth dimension has an unspecified value, in this case 1. The one-dimensional
Range is converted into the single integer two; its beginning and ending points must
be the same. The two-dimensiothac contributes values for the next two dimensions,
while the Interval contributes its beginning point, which must be the same as its
ending point. Note that theoc<1> constructors taking two and three parameters ig-
nore their second and third arguments, but this is not true for the multidimensional con-
structors.

5.3.1.2. Interval s

A one-dimensionalnterval represents a set of integers within a mathematical
terval. Multidimensionalnterval s represent their multidimensional generalization,
i.e., the direct product of one-dimensional interviiderval s are arguably the most
commonly used POOMAomain . A one-dimensionalnterval has integral be-
ginning and ending points and a unit stride.

Table 5-3. Declaring One-Dimensionalnterval s

constructor result

Interval<1>() creates an empty, uninitialized interval.
Interval<1>(const creates an uninitializebhterval<1> |
Pooma::Nolnit& no) to be assigned a value later.
Interval<l>(const DT1& creates ainterval<1l> . See the text
t1) for an explanation.

Interval<1>(const DT1& creates amnterval<l> with the

tl, const DT2& t2) integers converted froddl andt2 .
Interval<l>(const DT1& creates ainterval<l1> with the

tl, const DT2& t2, const integers converted frofl andt2 . t3
DT3& t3) must equal 1.

DT1, DT2 andDT3are template

parameters.

Interval<1> constructors are patterned boc<1> constructors except thit-
terval<l> s can have differing beginning and ending points. See Table 5-3. The

88

Chapter 5Array Containers

default constructor creates an empty, uninitialized interval, which should not be used
before assigning it values. If the one-parameter constructor’s argumerids1&in

object, it must be a one-dimensiofabmain object which is converted into dm-

terval if possible; for example, it must have unit stride. If the one-parameter con-
structor’'s argument is not Bomain object, it must be convertible to an integer

and an interval [0:e-1:1] starting at zero is constructed. Note e-1, not e, is used so the
Interval<1> has e indices. If two arguments are specified, they are assumed to
be convertible to integeds ande, specifying the interval [b:e:1]. The three-parameter
constructor is similar, with the third argument specifying a stride, which must be one.

Table 5-4. Declaring MultidimensionalInterval s

constructor result
Interval<D>() creates an empty, uninitialized

Interval | to be assigned a value later.
Interval<D>(const creates an empty, uninitialized
Pooma::Nolnit& no) Interval , to be assigned a value later.
Interval<D>(const DT1& creates amnterval using the given
t1) Domain object.
Interval<D>(const DT1& creates amnterval using the given
tl, const DT2& t2) Domain objects.
Interval<D>(const DT1& creates amnterval using the given
tl, const DT2& t2, const Domain objects.
DT3& t3)
Interval<D>(const DT1& creates amnterval using the given
tl, const DT2& t2, const Domain obijects.
DT3& t3, const DT4& t4)
Interval<D>(const DT1& creates ainterval using the given
tl, const DT2& t2, const Domain objects.

DT3& t3, const DT4& t4,

const DT5& t5)

Interval<D>(const DT1& creates amnterval using the given
tl, const DT2& t2, const Domain objects.

DT3& t3, const DT4& t4,

const DT5& t5, const DT6&

t6)

89

Chapter 5Array Containers

constructor result
Interval<D>(const DT1& creates ainterval using the given
tl, const DT2& t2, const Domain obijects.

DT3& t3, const DT4& t4,

const DT5& t5, const DT6&

t6, const DT7& t7)

Dindicates thdnterval ’s dimension.
DT1, DT2, ... are template parameters.

Constructors for multidimensionéiterval s closely follow constructors for multi-
dimensionaloc s. See Table 5-Dindicates thdnterval s dimension. The first

two constructors both return empty, uninitialized intervals. The seven other constructors
create arinterval usingDomain objects. Thes®omain objects, having types
DT1,...,DTY7, can have any type that can be converted into an integer, into a single-
dimensionaDomain object that can be converted into a single-dimensitmiar-

val , or to a multidimensionaDomain object that itself can be converted into an
Interval . The total dimensionality of all the arguments’ types should be at BRost
One-dimensionaDomain objects that can be converted into one-dimensidnal

terval sincludeLoc<1> s,Interval<l> s, andRange<1>s with unit strides.

If the sum of the objects’ dimensions is less thanhe intervals for the final dimensions

are unspecified. See the last paragraph of Section 5.3.1.1 for an analogous example. Note
that thelnterval<l1> constructors taking two and three parameters treat these ar-
guments differently than the multidimensional constructors do.

5.3.1.3. Ranges

A one-dimensionaRange generalizes amterval by permitting a non-unit stride
between integral members.rAngeis a set of integers in a mathematical interval [b,e]
with a stride s between them: {a, a+s, a+2s, ..., b}. Ranges are generalRetinten-
sions using the direct product of one-dimensional ranges.

Table 5-5. Declaring One-DimensionaRanges

constructor result

Range<1>() creates an empty, uninitialized range.

Range<1>(const creates an uninitializeRange<1>, to

Pooma::Nolnit& no) be assigned a value later.

Range<1>(const DT1& tl) creates &Range<1>. See the text for an
explanation.

90

Chapter 5Array Containers

constructor result

Range<1>(const DT1& t1, creates &Range<1> with an interval

const DT2& t2) specified by the integers converted from
tl andt2 .

Range<l1>(const DT1& t1, creates &xange<1> by converting the

const DT2& t2, const DT3& arguments to integeid ,i2 , andi3

t3) and then making a range [i1:i2:i3].

DT1, DT2, andDT3are template

parameters.

Range<1> constructors are the same kterval<l> constructors except they
create ranges, not intervals. See Table 5-5. The default constructor creates an empty,
uninitialized range, which should not be used before assigning it values. If the one-
parameter constructor’s argument iDamain object, it must be a one-dimensional
Domain object which is converted into Range if possible. If the one-parameter
constructor’'s argument is not@omain object, it must be convertible to an integer

and a range [0:e-1:1] starting at zero is constructed. Note e-1, not e, is used so the
Interval<1> has e indices. If two arguments are specified, they are assumed to
be convertible to integerb ande, specifying the range [b:e:1]. The three-parameter
constructor is similar, with the third argument specifying a stride.

Table 5-6. Declaring Multidimensional Ranges

constructor result

Range<D>() creates an empty, uninitializéfange, to
be assigned a value later.

Range<D>(const creates an empty, uninitializddlange, to

Pooma::Nolnit& no) be assigned a value later.

Range<D>(const DT1& tl1) creates &kange using the given
Domain object.

Range<D>(const DT1& t1, creates &ange using the given

const DT2& t2) Domain objects.

Range<D>(const DT1& t1, creates &ange using the given

const DT2& t2, const DT3& Domain obijects.

t3)

Range<D>(const DT1& t1, creates &kange using the given

const DT2& t2, const DT3& Domain objects.
t3, const DT4& t4)

91

Chapter 5Array Containers

constructor result

Range<D>(const DT1& t1, creates &ange using the given
const DT2& t2, const DT3& Domain obijects.

t3, const DT4& t4, const

DT5& t5)

Range<D>(const DT1& t1, creates &ange using the given
const DT2& t2, const DT3& Domain objects.

t3, const DT4& t4, const

DT5& t5, const DT6& t6)

Range<D>(const DT1& t1, creates &ange using the given
const DT2& t2, const DT3& Domain objects.

t3, const DT4& t4, const

DT5& t5, const DT6& t6,

const DT7& t7)

Dindicates thdRange’s dimension.

DT1,DT2, ... are template parameters.

Constructors for multidimensiondRanges are the same as multidimensiorat

terval constructors except they create ranges, not intervals. See Tabl® #6.
dicates theRange’s dimension. The first two constructors return empty, uninitialized
ranges. The seven other constructors creatRange usingDomain objects. These
Domain objects, having type®T1, ..., DT7, can have any type that can be con-
verted into an integer, into a single-dimensioBeimain object that can be converted

into a single-dimensiond&Range, or to a multidimensiondDomain object that itself

can be converted into dRange. The total dimensionality of all the arguments’ types
should be at modD. One-dimensiondDomain objects that can be converted into one-
dimensionaRanges includeLoc<1> s,Interval<l1> s, andRange<1>s. Ifthe

sum of the objects’ dimensions is less tHarthe ranges for the final dimensions are un-
specified. See the last paragraph of Section 5.3.1.1 for an analogous example. Note that
the Range<1> constructors taking two and three parameters treat these arguments
differently than the multidimensional constructors do.

5.3.1.4. Grid s

Locs,Interval s, andRanges all have regularly spaced integral values so they can

be represented usirtipmain triplets One-dimensionaBrid integral domains contain
ascending or descending sequences of integers, with no fixed stride. For example, a
Grid<1> may represent {-13, 1, 4, 5, 34§rid<1> is generalized to multidimen-
sionalGrid s using the direct product €rid<1> Domain s.

92

Chapter 5Array Containers

Grid s that can be represented using domain triplets can be constructed using tech-
niques similar to otheDomains, but irregularly spaced domains can be constructed
usingIndirectionList<int> S.

Table 5-7. Declaring One-DimensionaGrid s

constructor result

Grid<1>() creates an empty, uninitialized grid.

Grid<1>(const DT1& tl1) creates &rid<1> . See the text for an
explanation.

Grid<1>(const DT1& t1, creates &rid<1> from the interval

const DT2& t2) specified by the integers converted from
tl andt2 .

Grid<1>(const DT1& t1, creates &rid<1> from the domain

const DT2& t2, const DT3& triplet specified by the integers converted

t3) fromtl ,t2 , andt3 .

DT1, DT2 andDT3are template

parameters.

To construct aGrid<1> that can also be represented by a domain triplet, use a
Grid<1> constructor similar to those fdnterval<1> and Range<1>. See
Table 5-7 and the text explanations following Table 5-5 or Table 5-3.

Grid<1> swithirregularly spaced points can be constructed usidgrection-
List<int> s. For example,

IndirectionList<int> list(4);

list(0) = 2;

list(1) = 5:

list(2) = 6;

list(3) = 9;

Grid<1> g(list);
constructs an emptydirectionList<int> , fills it with ascending values, and
then creates &rid<1> containing {2, 5, 6, 9}. When creating a list, its size must be
specified. Subsequently, its values can be assignelirectionList s can also

be initialized using one-dimensionalray s:

Array<1,int,Brick> al(Interval<1>(0,3)),
al(0) = 2; al(l) = 5; al(2) = 6; al(3) = 9;

93

IndirectionList<int> il(al);
Grid<1> gi(il);

TheArray stores the integral points to include in tRgid<1> and is used to cre-
, Which itself is used to create tigrid<1> .

ate thelndirectionList<int>

Chapter 5Array Containers

Since the points are integers, tAgray 's type isint . Either aBrick or Com-

pressibleBrick Engine

should be used.

Table 5-8. Declaring Multidimensional Grid s

constructor
Grid<D>()

Grid<D>(const DT1& tl1)

Grid<D>(const DT1& t1,
const DT2& t2)
Grid<D>(const DT1& t1,
const DT2& t2, const DT3&
t3)

Grid<D>(const DT1& t1,
const DT2& t2, const DT3&
t3, const DT4& t4)
Grid<D>(const DT1& t1,
const DT2& t2, const DT3&
t3, const DT4& t4, const
DT5& t5)

Grid<D>(const DT1& t1,
const DT2& t2, const DT3&
t3, const DT4& t4, const
DT5& t5, const DT6& t6)
Grid<D>(const DT1& t1,
const DT2& t2, const DT3&
t3, const DT4& t4, const
DT5& t5, const DT6& t6,
const DT7& t7)

result

creates an empty, uninitializédrid , to
be assigned a value later.

creates 4&5rid
object.
creates &rid
objects.
creates &rid
objects.

creates &5rid
objects.

creates &rid

objects.

creates &rid
objects.

creates &5rid
objects.

using the giverDomain
using the giverDomain

using the giverDomain

using the giverDomain

using the giverDomain

using the giverDomain

using the giverDomain

Dindicates théarid ’s dimensionDT1,
DT2, ... are template parameters.

94

Chapter 5Array Containers

Constructors for multidimension&rid s are the same as multidimensiotater-

val constructors except they cre&@eid s, notintervals. See Table 5{indicates the
Grid ’s dimension. The first constructor returns empty, uninitialized grids. The seven
other constructors create &rid usingDomain objects. Thesd®omain objects,
having typedT1, ...,DT7, can have any type that can be converted into an integer, into
a single-dimensiondDomain object that can be converted into a single-dimensional
Grid , or to a multidimensionaDomain object that itself can be converted into an
Grid . The total dimensionality of all the arguments’ types should be at Ro€mne-
dimensionalDomain objects that can be converted into one-dimensi@at s in-
cludeLoc<1> s,Interval<l> s,Range<1>s, andGrid<1> s. If the sum of the
objects’ dimensions is less th&hthe grids for the final dimensions are unspecified. See
the last paragraph of Section 5.3.1.1 for an analogous example. Note tfei ¢l >
constructors taking two and three parameters treat these arguments differently than the
multidimensional constructors do.

5.3.2. Using Domains

Since anArray can be queried for its domain, we briefly describe sdd@main
operations. A fuller description, including arithmetic operations, occurs in Chapter 8. As
we mentioned in Section 5.3.1, tReoma/Domains.h header file declarédomainss,

but most storage container header files automatically indhad@a/Domains.h SO no
explicit inclusion is usually necessary.

Table 5-9. SomeéDomain Accessors

Domain member function result

MultidimensionalDomain Accessors

long size() returns the total number of indices.

bool empty() returnstrue if and only if theDomain
has no indices.

D<1> operator[](int returns the one-dimension@lomain for

dimension) the specified dimension. The return type is
a one-dimensional version of the
Domain.

One-dimensionadDomain Accessors

long length() returns the number of indices.

int first() returns the beginning of the domain.

95

Chapter 5Array Containers

Domain member function result

int last() returns the ending of the domain.

int min() returns the minimum index in the domain.

int max() returns the maximum index in the domain.

D<1>:iterator begin() returns a forward iterator pointing to the
beginning domain index.

D<1>:iterator end() returns a forward iterator pointing to the

ending domain index.
D abbreviates a particul@omain type,
e.g.,Interval or Grid . Other
Domain accessors are described in
Chapter 8.

Domain member functions are listed in Table 5-9. Functions applicable to both one-
dimensional and multidimensionBlomain s are listed before functions that only ap-
plicable to one-dimensiondDomains. Thesize member function yields the total
number of indices in a giveomain. If and only if this number is zereempty

will yield true . A multidimensionaldomain<D> is the direct product of D one-
dimensionaDomain s. Theoperator[](int dimension) operator extracts

the one-dimensiondDomain corresponding to its parameter. For example, the three
one-dimensiondRange<1>Domain s can be extracted fromRange<3> objectr
usingr[0] ,r[1] ,andr[2]

Domain accessors applicable only to one-dimensiddamain s are listed in the sec-
ond half of Table 5-9. Théength member function, analogous to the multidimen-
sionalsize function, returns the number of indices in tBemain . Thefirst and
last member functions return the domain’s beginning and ending indicesb&he
gin andend member functions return forward iterators pointing to these respective
locations. They have typp<1>::iterator , whereD abbreviates th®omain’'s
type, e.g.Jnterval orGrid . Themin andmax member functions return the min-
imum and maximum indices in thBomain object, respectively. Fdcoc<1> and
Interval<l> | these yield the same valuesfast andlast , butRange<1>
andGrid<1> can have their numerically largest index at the beginning of {Dei
main s.

96

Chapter 5Array Containers

5.4. Declaring Array s

A POOMA Array mapsDomain indices to values. In this section, we describe how
to declareArray s. In the next section, we explain how to access individual values
stored within arArray and how to copyArray s.

Array values need not just be stored values, as C arrays have. The values can also be
computed dynamically by the engine associated withAfr@y . We defer discussion

of computing values to the next chapter discussing engines (Chapter 6). Therefore, when
we mention “the values stored in &rray ”, we implicitly mean “the values stored in

or computed by thérray .

Declaring anArray requires four arguments: the domain’s dimensionality, the type

of values stored or computed, a specification how the values are stored or computed,
and aDomain . The first three arguments are template parameters since few scientific
programs need to (and no POOMA programs can) change these values while a program
executes. For example, &iray cannot change the type of the values it stores, but an
Array ’s values can be copied into anothray having the desired type. Although
scientific programs do not frequently change an array’s domain, they do frequently re-
guest a subset of the array’s values, i.evieav. The subset is specified viaomain

so it is a run-time value. Views are presented in Chapter 8.

An Array s first template parameter specifies its dimensionality. This positive inte-
gerD specifies its rank and has the same value as its domain’s dimensionality. Theoreti-
cally, anArray can have any positive integer, but the POOMA code currently supports
a dimensionality of at most seven. For almost all scientific codes, a dimension of three or
four is sufficient, but the POOMA code can be extended to support higher dimensions.

An Array 's second template parameter specifies the type of its stored or computed val-
ues. Common value types inclut@ , double , complex , andVector , but any

type is permissible. For example, &tray s values might be matrices or even other
Array s. The parameter’s default value is usualguble , but it may be changed
when the POOMA Toolkit is configured.

An Array s third parameter specifies how its data is stored or computed fynan

gine and its values accessed. The argument is a tag indicating a particular type of
Engine . Permissible tags includBrick , CompressibleBrick , andCon-
stantFunction . TheBrick tag indicates allArray values will be explicitly
stored, just as built-in C arrays do. If &aray frequently stores exactly the same value

in every position, &&ompressibleBrick Engine , Which reduces its space re-
guirements to a constant whenever all its values are the same, is approprata-A
stantFunction Engine returns the same value for all indices. Solamegine s
compute values, e.g., applying a function to every value in andiimgjine . These

97

Chapter 5Array Containers

Engine s are discussed in Chapter 6. To avoid being verbose in the rest of this chap-
ter, we abbreviate “store or compute values” as “store values”. The engine parameter’s
default value is usuallBrick , but it may be changed when the POOMA Toolkit is
configured.

Even though everArray container has an engine to store its values and permit ac-
cess to individual values, the concept of Array is conceptually separate from the
concept of an engine. An engine’s role is low-level, storing values and permitting access
to individual values. As we indicated above, the storage can be optimized to fit specific
situations such as few nonzero values and computing values using a function applied
to another engine’s values. Alrray ’s role is high-level, supporting access to groups

of values.Array s can be used in data-parallel expressions, e.g., adding all the val-
ues in oneArray to all the values in another. (See Chapter 7 for more information.)
Subsets oArray values, frequently used in data-parallel statements, can be obtained.
(See Chapter 8 for more information.) Even though enginesfanay s are concep-
tually separate, higher-levérray s provide access to lower-levEingine s. Users
usually have arArray create itsEngine (s), rarely explicitly creatingEngine s
themselves. AlsdArray s support access to individual values. In short, POOMA users
useArray s, only dealing with how they are implemented (engines) when declaring
them. For a description dngine s, see Chapter 6.

An Array ’s one run-time argument is its domain. The domain specifies its extent and
consequently how many values it can return. All the proviaimain objects are
combined to yield arinterval<D> , where D matches thArray s first template
parameter. Since dnterval domain with its unit strides is used, there are no unac-
cessed “gaps” within the domain, wasting storage space. To use other domains to access
anArray , first create it using atnterval domain and then take a view of it, as
described in Chapter 8. As we mentioned above, the current POOMA code supports
up to seven dimensions so at most sel@main objects can be provided. If more
dimensions are required, the POOMA code can be extended to the desired number of
dimensions.

Array constructors are listed in Table 5-10. Auray 's three template parameters

for dimensionality, value type, and engine type are abbrevigXelh andE. Template
parameters for domain types are nanhfll, ...,DT7. The first constructor, with no
domain arguments, creates an empty, uninitiali2etay for which a domain must

be specified before it is used. Specify the array’s domain usininitslize

function. The next seven constructors combine their domain arguments to compute the
resulting Array ’'s domain. These are combined in the same way that multidimen-
sionallnterval s are constructed. (See Table 5-4 and the following text.) The do-
main objects, having type®T1, ..., DT7, can have any type that can be converted
into an integer, into a single-dimensiofabmain object that can be converted into

98

Chapter 5Array Containers

a single-dimensiondinterval , or to a multidimensionaDomain object that it-

self can be converted into dnterval . The total dimensionality of all the argu-
ments’ types shouleéqual D, unlike Interval construction which permits total di-
mensionality less than or equal &2 One-dimensionaDomain objects that can be
converted into one-dimensionkdterval s includeLoc<l1> s, Interval<l> s,
andRange<1>s with unit strides. To initialize all of aArray ’s values to a specific
value, use one of the final seven constructors, each taking a particular value, wrapped as
aModelElement . These constructors use the given domain objects the same way as
the preceding constructors but assipodel to everyArray value.model 's type is
ModelElement<T> , rather thar, to differentiate it from annt , which can also

be used to specify a domain objeModelElement just stores an element of any
type T, which must match thArray ’s value typeT.

Table 5-10. DeclaringArray s

Array declaration result

Array<D,T,E>() creates an empty, uninitializédrray
which must benitialize (d before
use.

Array<D,T,E>(const DT1& creates arrray using the given

t1) Domain object or integer.

Array<D,T,E>(const DT1& creates array using the given

tl, const DT2& t2) Domain objects and integers.

Array<D,T,E>(const DT1& creates array using the given

tl, const DT2& t2, const Domain objects and integers.

DT3& t3)

Array<D,T,E>(const DT1& creates array using the given

tl, const DT2& t2, const Domain objects and integers.

DT3& t3, const DT4& t4)

Array<D,T,E>(const DT1& creates arrray using the given

tl, const DT2& t2, const Domain objects and integers.

DT3& t3, const DT4& t4,

const DT5& t5)

Array<D,T,E>(const DT1& creates arrray using the given
tl, const DT2& t2, const Domain objects and integers.
DT3& t3, const DT4& t4,

const DT5& t5, const DT6&

t6)

99

Array declaration
Array<D,T,E>(const DT1&
tl, const DT2& t2, const
DT3& t3, const DT4& t4,
const DT5& t5, const DT6&
t6, const DT7& t7)
Array<D,T,E>(const DT1&
tl, const
ModelElement<T>& model)
Array<D,T,E>(const DT1&
tl, const DT2& t2, const
ModelElement<T>& model)
Array<D,T,E>(const DT1&
tl, const DT2& t2, const
DT3& t3, const
ModelElement<T>& model)
Array<D,T,E>(const DT1&
tl, const DT2& t2, const
DT3& t3, const DT4& t4,
const ModelElement<T>&
model)
Array<D,T,E>(const DT1&
tl, const DT2& t2, const
DT3& t3, const DT4& t4,
const DT5& t5, const
ModelElement<T>& model)
Array<D,T,E>(const DT1&
tl, const DT2& t2, const
DT3& t3, const DT4& t4,
const DT5& t5, const DT6&
t6, const
ModelElement<T>& model)
Array<D,T,E>(const DT1&
tl, const DT2& t2, const
DT3& t3, const DT4& t4,
const DT5& t5, const DT6&
t6, const DT7& t7, const
ModelElement<T>& model)

Chapter 5Array Containers

result

creates array using the given
Domain objects and integers.

creates adrray using the given
Domain object or integer and then
initializes all entries usingnodel .
creates arrray using the given
Domain objects and integers and then
initializes all entries usingnodel .
creates arrray using the given
Domain objects and integers and then
initializes all entries usingnodel .

creates arrray using the given
Domain objects and integers and then
initializes all entries usingnodel .

creates ar\rray using the given
Domain objects and integers and then
initializes all entries usingnodel .

creates arrray using the given
Domain objects and integers and then
initializes all entries usingnodel .

creates array using the given
Domain objects and integers and then
initializes all entries usingnodel .

100

Chapter 5Array Containers

Array declaration result

Template parametef3 T, andE indicates
theArray ’s dimension, value type, and
Engine type, respectivehDTL, ...,
DT7 indicate domain types or integers.

We illustrate creatind\rray s. To create a three-dimensiodglray a explicitly stor-
ing double floating-point values, use

Interval<1> D(6);

Interval<3> 13(D,D,D);

Array<3,double,Brick> a(13);
The template parameters specify its dimensionality, the type of its values,Bindka
Engine type, which explicitly stores values. Its domain, which must have three dimen-
sions, is specified by alnterval<3> object which consists of [0,5] intervals for
all its three dimensions. Sina@bouble andBrick are usually the default template
parameters, they can be omitted so these declarations are equivalent:

Array<3,double> a_duplicate1(13);
Array<3> a_duplicate2(13);.

To create a similaArray with a domain of [0:1:1, 0:2:1, 0:0:1], use
Array<3> b(2,3,1);

since specifying an integérindicates a one-dimensional zero-babaitrval [0:i-
1:1]. To store booleans, specifpol as the second template argument:

Array<2,bool> c¢(2,3);

To specify a default Array value of true , use ModelEle-
ment<bool>(true)

Array<2,bool> ¢(2,3, ModelElement<bool>(true));.
To create a one-dimensionatray containing sevenlouble s all equalingr, use

const double pi = 4.0*atan(1.0);

101

Chapter 5Array Containers

Array<1,double,CompressibleBrick>
d(7, ModelElement<double>(pi));.

We use ££ompressibleBrick Engine , rather than &8rick Engine , so all
seven values will be stored in one location rather than in seven separate locations when
they are all the same.

An uninitializedArray , created using its parameter-less constructor, must have a spec-
ified domain before it can be used. For example, one must use the paramefef-less

ray constructor when creating an arrayAfray s usingnew so their domains must

be specified. (It would probably be better to creatdaray of Array s since memory
allocation and deallocation would automatically be handlad:y ’s initialize

functions accept the same set of domain object specifications and model elements that
theArray constructors do, creating the specified domain. See Table 5-11. For example,
botha andb are two-dimensionalrray s offloat s with a[2:7:1,-2:4:1] domains:

/I Create an Array and its domain.
Array<2,float,Brick> a(Interval<1>(2,7),
Interval<1>(-2,4));

I/l Create an Array without a domain and then specify
/I its domain.

Array<2,float,Brick> b();

b.initialize(Interval<1>(2,7), Interval<l1>(-2,4));.

Invoking initialize on anArray with an existing domain yields unspecified
behavior. AllArray values may be lost and memory may be leaked.

Table 5-11. Initializing Array s’ Domains

An Array ’s initialize member
functions sets its domain and

should be invoked only for an array
created without a domain. It returns

nothing.

initialize declaration result

initialize(const DT1& tl1) creates thérray ’'s domain using the
givenDomain object or integer.

initialize(const DT1& t1, creates thé\rray ’'s domain using the

const DT2& t2) givenDomain objects and integers.

102

An Array s initialize member

functions sets its domain and

should be invoked only for an array
created without a domain. It returns

nothing.

initialize declaration
initialize(const DT1& t1,
const DT2& t2, const DT3&
t3)

initialize(const DT1& t1,
const DT2& t2, const DT3&
t3, const DT4& t4)
initialize(const DT1& t1,
const DT2& t2, const DT3&
t3, const DT4& t4, const
DT5& t5)

initialize(const DT1& t1,
const DT2& t2, const DT3&
t3, const DT4& t4, const
DT5& t5, const DT6& t6)
initialize(const DT1& t1,
const DT2& t2, const DT3&
t3, const DT4& t4, const
DT5& t5, const DT6& t6,
const DT7& t7)
initialize(const DT1& t1,
const ModelElement<T>&
model)

initialize(const DT1& t1,
const DT2& t2, const
ModelElement<T>& model)
initialize(const DT1& t1,
const DT2& t2, const DT3&
t3, const
ModelElement<T>& model)
initialize(const DT1& t1,
const DT2& t2, const DT3&
t3, const DT4& t4, const
ModelElement<T>& model)

Chapter 5Array Containers

result

creates thé\rray ’'s domain using the
givenDomain objects and integers.

creates thé\rray ’'s domain using the
givenDomain objects and integers.

creates thé\rray ’'s domain using the
givenDomain objects and integers.

creates thé\rray ’'s domain using the
givenDomain objects and integers.

creates thé\rray ’s domain using the
givenDomain objects and integers.

creates thé\rray ’'s domain using the
givenDomain object or integer and then
initializes all entries usingnodel .

creates thé\rray ’s domain using the
givenDomain objects and integers and
then initializes all entries usingnodel .
creates thé\rray ’'s domain using the
givenDomain objects and integers and
then initializes all entries usingnodel .

creates thé\rray ’'s domain using the

givenDomain objects and integers and
then initializes all entries usingnodel .

103

Chapter 5Array Containers

An Array s initialize member
functions sets its domain and

should be invoked only for an array
created without a domain. It returns

nothing.

initialize declaration result

initialize(const DT1& t1, creates thérray ’s domain using the
const DT2& t2, const DT3& givenDomain objects and integers and
t3, const DT4& t4, const then initializes all entries usingnodel .

DT5& t5, const
ModelElement<T>& model)

initialize(const DT1& t1, creates thérray ’'s domain using the
const DT2& t2, const DT3& givenDomain objects and integers and
t3, const DT4& t4, const then initializes all entries usingnodel .

DT5& t5, const DT6& t6,
const ModelElement<T>&

model)

initialize(const DT1& t1, creates thérray ’'s domain using the
const DT2& t2, const DT3& givenDomain objects and integers and
t3, const DT4& t4, const then initializes all entries usingnodel .

DT5& t5, const DT6& t6,
const DT7& t7, const
ModelElement<T>& model)
Template parametefa3Tl, ...,DT7
indicate domain types or integers.

5.5. Using Array s

In the previous section, we explained how to declare and initidg@&y s. In this
section, we explain how to access individual values stored withiArgay and how

to copyArray s. In Chapter 7, we explain how to use entixgray s in data-parallel
statements, including how to print them. In Chapter 8, we extend this capability to work
on subsets.

In its simplest form, a\rray stores individual values, permitting access to these val-
ues. For a C++ array, the desired index is specified within square brackets following the
array’s name. For POOMArray s, the desired index is specified within parentheses
following the Array ’s name. The same notation is used to read and write values. For

104

Chapter 5Array Containers

example, the following code prints the initial value at index (2,-2) and increments its
value, printing the new value:

Array<2,int,Brick> a(Interval<1>(0,3),
Interval<1>(-2,4),
ModelElement<int>(4));
std::cout << a(2,-2) << std::endl;
++a(2,-2);
std::cout << a(2,-2) << std::endl;

4 and then5 are printed. An index specification for @rray usually has as many
integers as dimensions, all separated by commas, bnttey ’s engine may permit
other notation such as using strings or floating-point numbers.

For read-only access to a value, usedad member function, which takes the same
index notation as its nameless read-write counterpart:

std::cout << a.read(2,-2) << std::endl;

Usingread sometimes permits the optimizer to produce faster executing code.

Copying Array s requires little execution time becauBeray s havereference se-
mantics That is, a copy of al\rray and theArray itself share the same underlying
data. Changing a value in one changes it in the other. Example 5-1 illustrates this behav-
ior. Initially, all values in the arrag are 4. Theb array is initialized usin@ so it shares

the same values as Thus, changing the former’s value also changes the latter’s value.
Function arguments are also initialized so changing their underlying values also changes
the calling function’s values. For example, theangeValue function changes the
value at index (0,0) for both its function argument and

Example 5-1. CopyingArray s

#include "Pooma/Pooma.h"
#include "Pooma/Arrays.h"
#include <iostream>

/I Changes the Array value at index (0,0).

void changeValue(Array<2,int,Brick>& z)
{ z00) = 6; }

105

Chapter 5Array Containers

int main(int argc, char *argv[])

{

Pooma::initialize(argc,argv);

Array<2,int,Brick> a(3,4, ModelElement<int>(4));
std::cout << "Initial value:\n";
std::cout << "a: " << a(0,0) << std::endl,

Il Array copies share the same underlying values.

/I Explicit initialization uses reference semantics
/l so changing the copy’s value at (0,0) also
/I changes the original's value.
Array<2,int,Brick> b(a);

b(0,0) = 5;

std::cout << "After explicit initialization.\n";
std::cout << "a: " << a(0,0) << std::endl;
std::cout << "b: " << b(0,0) << std::endl,

/I Initialization of function arguments also uses
/I reference semantics.

std::cout << "After function call:\n";
changeValue(a);

std::cout << "a: " << a(0,0) << std::endl;
std::cout << "b: " << b(0,0) << std::endl,

Pooma::finalize();
return O;

The separation between a higher-le#gray and its lower-levelEngine storage
permits fast copying. A\rray ’s only data member is its engine, which itself has ref-
erence semantics that increments a reference-counted pointer to its data. Thus, copying
anArray requires creating a new object with one data member and incrementing a
pointer’s reference count. Destruction is similarly inexpensive.

Array assignment does not have reference semantics. Thus, the assignmelit en-
sures that all o&’s values are the same hsat the time of assignment only. Subsequent

106

Chapter 5Array Containers

changes t@’s values do not chand®s values or vice versa. Assignment is more expen-
sive than creating a reference. Creating a reference requires creating a very small object
and incrementing a reference-counted pointer. An assignment requires storage for both
the left-hand side and right-hand side operands and traversing all of the right-hand side’s
data.

The Array class has internal type definitions and constants useful for both compile-
time and run-time computations. See Table 5-12. These may be accessed ubing the

ray ’'s type and the scope resolution operator J. The table begins with a list of in-
ternal type definitions, e.gArray<D,T,E>::This_t . A layoutmaps a domain

index to a particular processor and memory used to compute the associated value. The
two internal enumeratiordimensions andrank both record thédrray ’s dimen-

sion.

Table 5-12.Array Internal Type Definitions and Compile-Time Constants

internal type or compile-time meaning

constant

This_t theArray ’s typeArray<D,T,E>

Engine t theArray ’'s Engine type
Engine<D,T,E>

EngineTag_t theArray 's Engine s tagE.

Element t the typeT of values stored in thArray .

ElementRef t the type of references to values stored in
theArray (usuallyT&).

Domain_t the type of théArray ’s domain.

Layout t the type of théArray ’s layout.

const int dimensions the number D of dimensions of the
Array .

const int rank synonym fordimensions

The Array class has several member functions easing access to its domain and en-
gine. The first ten functions listed in Table 5-13 ease accefgray domains. The

first three functions are synonyms all returning fray 's domain, which has type
Array<D,T,E>::Domain_t (abbreviatedomain_t in the table). The next
seven functions query the domafirst , last , andlength return the first index,

last index, and number of indices for the specified dimension. The domain’s dimen-
sions are numbered 0, 1, . Array<D,T,E>::dimensions -1. If these values

are needed for all dimensions, uiests |, lasts , andlengths . The returned

107

Chapter 5Array Containers

Loc<D>s have D entries, one for each dimensisize returns the total number of
indices in the entire domain. This is the product of all the dimensitergjth s. The
layout member function returns th&rray s layout, which specifies the mapping
of indices to processors and memory. The last two functions retudttay 's engine.

Table 5-13.Array Accessors

Array member function result

Domain_t domain() returns theéArray ’s domain.

Domain_t physicalDomain() returns theéArray ’s domain.

Domain_t totalDomain() returns théArray ’'s domain.

int first(int dim) returns the first index value for the
specified dimension.

int last(int dim) returns the last index value for the
specified dimension.

int length(int dim) returns the number of indices (including
endpoints) for the specified dimension.

Loc<Dim> firsts() returns the first index values for all the
dimensions.

Loc<Dim> lasts() returns the last index values for all the
specified dimensions.

Loc<Dim> lengths() returns the numbers of indices (including
endpoints) for all the specified
dimensions.

long size() returns the total number of indices in the
domain.

Layout_t layout() returns theéArray 's layout.

Engine_t engine() returns théArray 's engine.

const Engine_t engine() returns théArray 's engine.

Internal type definitions, e.g.,
Domain_t , are listed here without the
class type prefiArray<D,T,E>::

We illustrate usingArray member functions in Example 5-2. The program com-
putes the total number dirray ’s indices, comparing the result with invoking its
size method. Since thArray ’'snameisa, a.size() returns its size. Theom-
puteArraySize function also computes th&rray ’s size. This templated func-
tion uses its three template parameters to accepargy , regardless of its dimen-
sion, value type, oEngine tag. It begins by obtaining the range of indices for all

108

Chapter 5Array Containers

dimensions and their lengths. Only the latter is necessary for the computation, but using
the former further illustrates using member functions. The domain’s size is the product
of the length of each dimension. Since the lengths are stored ihabeD> lens
lens[d] isaloc<1>, for which itsfirst member function extracts the length.
Thelength Array ~ member function is used in tHéAssert .

Example 5-2. UsingArray Member Functions

#include "Pooma/Pooma.h"
#include "Pooma/Arrays.h"
#include <iostream>

/I Print an Array's Size

/[This program illustrates using the Array member

/I functions. computeArraySize’s computation is

/I redundant because Array’s size() function computes
/I the same value, but it illustrates using Array

/[member functions.

template <int Dim,typename Type,typename EngineTag> (1)
inline
long computeArraySize(const Array<Dim,Type,EngineTag>& a)
{
const Loc<Dim> fs = a.firsts(); (2)
const Loc<Dim> Is = a.lasts();
const Loc<Dim> lens = a.lengths();
long size = 1,
for (int d = 0; d < Dim; ++d) {

size *= lens[d].first(); 3)
/I Check that lengths() and our computed lengths agree.
PAssert((Is[d]-fs[d]+1).first()==a.length(d)); 4)
}
return size;

}

int main(int argc, char *argv[])

{

Pooma::initialize(argc,argv);

109

Chapter 5Array Containers

Array<3,int,Brick> a(3,4,5, ModelElement<int>(4));
PAssert(computeArraySize(a) == a.size()); (5)
std::cout <<

"The array’s size is " << a.size() << ".\n";

Pooma::finalize();
return O;

(1) These template parameters, used inAh&y parameter’s type, permit the function
to work with anyArray .

(2) We invoke these three member functions usingAhky ’'s namea, a period, and
the functions’ names. These functions retlotc s.

(3) lens[d] returns aLoc<l1l> for dimensiond’s length. Invoking Loc<1>
first method yields its value.

(4) This comparison is unnecessary but further illustrates using member functions.

(5) Thesize is invoked by prepending th&rray ’s name followed by a period. This
assertion is unnecessary, but t@emputeArraySize function further illus-
trates using member functions.

5.6. DynamicArray s

Array s have fixed domains so the set of valid indices remains fixed after creation. The
DynamicArray classsupports one-dimensional domains that can be resized even
while the array is used.

DynamicArray s interface extends the one-dimensional interface ofAsiray

by adding member functions to change the domain’s size. It is declar@doita/
DynamicArrays.h. A DynamicArray has two, not three, template parameters,
omitting the array’s dimensionality which must be one. The first paramesgrecifies

the type of stored values. Its default value is usudtiyble , but this may be changed
when the POOMA Toolkit is configured. The second parameter specifiEngime

via anEngine tag. The engine must support a domain with dynamic resizing. For ex-
ample, thdDynamic Engine is analogous to a one-dimensiof#tick Engine

110

Chapter 5Array Containers

supporting a dynamically-resizable domain. It is also usually the default value for this
tag. For exampleDynamicArray<> d0O(1); , DynamicArray<double>

d1(1); , and DynamicArray<double, Dynamic> d2(1); all declare

the saméynamicArray s explicitly storing onelouble value. ADynamicAr-

ray automatically allocates its initial memory and deallocates its final memory, just as
anArray does.

Thecreate anddestroy member functions permit changingRynamicAr-

ray 's domain. Table 5-14 lists these member functions but omits functions exclusively
used in distributed computation. When making the domain larger, new indices are added
to the end of the one-dimensional domain and the corresponding values are initialized
with the default value foll . Existing values are copied.

Table 5-14. Changing aDynamicArray ’'s Domain

DynamicArray member function description

void create(int num) extend the current domain by the
requested number of elements.

void destroy(const Domé& remove the values specified by the indices

killList) in the givenDomain argument. The

“Backfill” method moves values from the
end of the domain to replace the deleted

values.
void destroy(lter remove the values specified by the indices
killBegin, Iter killEnd) in the container range [begin,end)

specified by the random-access iterators.
The “Backfill” method moves values from
the end of the domain to replace the
deleted values.

void destroy(const Domé& remove the values specified by the indices
killList, const in the givenDomain argument. Deleted
DeleteMethod& method) values can be replaced by

BackFill ’ing, i.e., moving data from

the domain’s end to fill removed values, or
by ShiftUp ’ing, i.e., compacting all
data but maintaining the relative ordering.

111

Chapter 5Array Containers

DynamicArray member function description

void destroy(lter remove the values specified by the indices

killBegin, Iter killEnd, in the container range [begin,end)

const DeleteMethod& specified by the random-access iterators.

method) Deleted values can be replaced by
BackFill ’ing, i.e., moving data from

the domain’s end to fill removed values, or
by ShiftUp ’ing, i.e., compacting all
data but maintaining the relative ordering.
This table omits member functions
designed for distributed computation.

The destroy member function deletes the specified indices. The indices may be
specified using either ®omain object (nterval<l> |, Range<1>, or In-
directionList) or by random-access iterators pointing into a container. For
example, every other value from a ten-value arichymight be removed using
Range<1>(0,9,2) . Alternatively,

int KillList[] = {0, 2, 4, 6, 8}
d.destroy(killList, killList+5);

performs the same deletions. As indices are removed, other indices are moved into their
positions. Using thé&ackFill method moves the last index and its associated value
into deleted index’s position. Thus, the total number of indices is decreased by one, but
the indices are reordered. Using tBhiftUp method ensures the order of the indices

is preserved by “shifting” all values left (or up) so all “gaps” between indices disappear.
For example, consider removing the first index from a domain.

original indices: 0123
destroy usingBackFill 312
destroy usingShiftUp 123

TheBackFill moves the rightmost index 3 into the removed index 0’s position. The
ShiftUp moves all the indices one position to the left. This illustrates Beatk-

Fill moves exactly as many indices as are deleted, whiié€tUp can shift all
indices in a domain. Thu8ackFill is the default method. When multiple indices

are deleted, they are deleted from the last (largest) to the first (smallest). When using
the BackFill method, some indices may be moved repeatedly. For example, con-
sider removing indices 0 and 2 from original indices of 0 1 2 3. Removing 2 yields 0

112

Chapter 5Array Containers

1 3 because 3 is moved into 2’s position. Removing 0 yields 3 1 because 3 is again
moved. Use an object with the desired type to indicate which fill method is desired, i.e.,
BackFill() or ShiftUp()

We illustrateDynamicArray resizing in Example 5-ynamicArray s are de-
clared inPooma/DynamicArrays.h, notPooma/Arrays.h. Their declarations require

two, not three, template arguments because the array must be one-dimensional. The
three arrays, each having odeuble value, are equivalent. (The POOMA Toolkit

can be configured to support different default template values.) Invakiig cre-

ate with an argument of five increases its domain size from one to six. The additional
indices are added to the end of the domain so the value at index O is not changed. To
illustrate which indices are removed and which indices are reordered, the program first
sets all values equal to their indices. This illustrates BPynamicArray values are
accessed the same wayAisay values. For examplelO(i) accesses thie" value.
Thedestroy member function removes every other index from the array because the
one-dimensionaRange specifies the domain’s entire interval with a stride of 2. The
BackFill function call creates 8ackFill object indicating theBackFill

method should be used. We illustrate the steps of this method:

original indices: 012345
delete index 4: 01235
delete index 2: 0153
delete index O: 315

Since multiple indices are specified, the rightmost one is removed first, i.e., index 4. The
rightmost index 5 is moved into 4’s position. When removing index 2, the index origi-
nally at 5 is again moved into 2's position. Finally, index 0O is replaced by index 3. The
rest of the program repeats the computation, using the random-access iterator version
of destroy . Since thisDynamicArray 's indices are specified usingt s, the

killList explicitly lists the indices to remove. Thkestroy call uses pointers to
the beginning and end of tHellList array to specify which of its indices to use.
Since no replacement method is specified, the deBattkFill method is used. All

theDynamicArray s’ unallocated memory is deallocated.

Example 5-3. Example UsindDynamicArray s

#include "Pooma/Pooma.h"
#include "Pooma/DynamicArrays.h" (1)
#include <iostream>

113

Chapter 5Array Containers

/I Demonstrate using DynamicArrays.

int main(int argc, char *argvl[])

{

Pooma::initialize(argc,argv);

I/l Create a DynamicArray with one element. (2)
DynamicArray<> d0O(1);

DynamicArray<double> d01(1);

DynamicArray<double, Dynamic> d02(1);

/l Add five more elements. 3)

dO.create(5);

/I Store values in the array.

for (int i = d0.domain().first(); i <= dO.domain().last(); ++i)
do@) = i; 4

I/l Delete every other element. (5)
d0.destroy(Range<1>(d0.domain().first(),d0.domain().last(),2), BackFill());

/I Print the resulting array.
std::cout << dO0 << std::endl;

I/l Use the iterator form of ’'destroy.’

DynamicArray<> d1(6);

for (int i = dl.domain().first(); i <= dl.domain().last(); ++i)
di@) = i

int killList[] = { 0, 2, 4 }; (6)

d1.destroy(killList, KillList+3);

std::cout << d1 << std::endl;

Pooma::finalize();
return O;

(1) This header file declarddynamicArray s.

(2) These three declarations yield equival@ntnamicArray s, storing onedou-
ble value.

114

Chapter 5Array Containers
(3) Thiscreate member function call adds five indices to the end of the domain.
(4) DynamicArray values are accessed the same wagagy values.

(5) TheRange object specifies that every other index should be removedBHDK-
Fill() object is unnecessary since it is the default replacement method.

(6) Thisdestroy call is equivalent to the previous one but uses iterators.

115

Chapter 6. Engines

Each container has one or mde@gine s to store or compute its values. As we men-
tioned in Section 5.4, a container’s role is high-level, supporting access to groups of
values, and an engine’s role is low-level, storing or computing values and supporting
access to individual values. This separation permits optimizing space and computation
requirements.

We begin this chapter by introducing the concept of an engine and how it is used. Then,
we describe the variodsngine s that POOMA provides, separating them into engines
that store values and engines that compute values.

6.1. The Concept

An engine performs the low-level value storage, computation, and element-wise access
for a container. An engine has a domain and accessor functions returning individual
elements. The POOMANQgine class and its specializations implement the engine
concept. Given an index within the domain, Bngine ’'s operator() function
returns the associated value, which can be used or changeealls member func-

tion returns the same value but permitting only use, not modification. The acceptable
indices are determined by eaElmgine . Most accept indices specified usimd and
Loc<D> parameters, but dangine might accept string or floating-point parameters.

An Engine s layout specifies maps its domain indices to the processors and memory
used to store and compute the associated values.

Since an engine’s main role is to return the individual values associated with specific
domain indices, any implementation performing this task is an engine. POBNA
gine s fall into three categories:

- Engine s that store values.
- Engine s that compute their values using ottkgngine s’ values.

- Engine s that support distributed computation.

For example, theBrick Engine explicitly stores all its values, while th€om-
pressibleBrick engine adds the feature of reducing its storage requirements if
all these values are identical. BserFunction Engine yields values by apply-

ing afunction objectto each value returned by anotifengine . A CompFwd En-

gine projects components from anotiengine . For exampleCompFwdwill use

the second components of ea¢actor inanArray to form its ownArray . Since

116

Chapter 6. Engines

each container has at least daagine , we can also describe the latter category as
containers that compute their values using other containers’ valuktuliPatch

Engine distributes its domain among various processors and memory spaces, each re-
sponsible for computing values associated with a portion, or patch, of the domain. The
Remote Engine also supports distributed computation.

Just as multiple containers can use the same engine, multipgne s can use the
same underlying data. As we mentioned in Section Eigine s havereference se-
mantics A copy of anEngine has a reference-counted pointer to Eregine ’s data
(if any exists). Thus, copying dangine or a container requires little execution time. If
anEngine has the same data as anotk&éigine but it needs its own data to modify,
themakeOwnCopymember function creates such a copy.

Engine s are rarely explicitly declared. Instead a container is declared usikgan
gine tag, and the container creates the specifigjyine to deal with its values.

For example, 8rick Engine s explicitly declared a&Engine<D, T,Brick> ,

but they are more frequently created by containers, Argay<D,T,Brick> . An
Engine ’s first two template parameters specify the domain’s dimensionality and the
value type, as described in Section 5.4. Unlike container declarations, the third template
parameter, thé&ngine tag, specifies whicllengine specialization to use. For ex-
ample, theBrick Engine tag indicates 8rick Engine should be used. Some
Engine s, such aCompFwd are rarely declared even usikmgine tags. Instead

the Array 's comp andreadComp member functions return views of containers
usingCompFwd Engines.

6.2. Types of Engine s

In this section, we describe the different types&ofgine s and illustrate their creation,
when appropriate. First, we describggine s that explicitly store values and then
Engine s that compute values. See Table 6-1.

Table 6-1. Types ofEngine s

Engine tag description

Engine s That Store

Brick explicitly stores all values; similar to C
arrays.

117

Engine tag
CompressibleBrick

Dynamic

Engine s That Compute

Chapter 6. Engines

description

stores all values, reducing storage
requirements when all values are
identical.

is a one-dimensiondrick with
dynamically resizable domain. This
should be used witbynamicArray
notArray .

CompFwd

ConstantFunction

IndexFunction<FunctionObject>

ExpressionTag<Expr>

Stencil<Function,
Expression>

UserFunctionEngine<Function,
Expression>

Engine s for Distributed Computation

extracts specified components of an
engine’s vectors, tensors, arrays, etc.;
usually created using thr@omp container
function.

makes a scalar value behave like a
container.

makes thd-unctionObject s
function of indices behave like a
container.

evaluates an expression tree; usually
created by data-parallel expressions.
applies a stencil computation
(Function)toits input

(Expression) which is usually a
container; usually created by applying a
Stencil object to a container. A stencil
computation can use multiple neighboring
input values.

applies the given function (dunction
objec) to its input Expression)
which is usually a container; usually
created by applying B)serFunction
object to a container. The function
implements a one-to-one mapping from
its input to values.

MultiPatch<LayoutTag,EngineTag> runs a separatengineTag Engine

on each context (patch) specified by the
given layout. This is the usu&lngine
for distributed computation.

118

Chapter 6. Engines

Engine tag description

Remote<EngineTag> runs theEngine specified by
EngineTag on a specified context.

Remote<Dynamic> runs aDynamic one-dimensional,

resizableEngine on a specified context.
This is a specialization dRemote.

Brick Engine s explicitly store values just like C array€ompressible-

Brick Engine s optimize their storage requirements when all values are identical.
Many Array s use one of these twlangine s. Brick s are the defaulEngine s

for Array andField containers because they explicitly store each value. This ex-
plicit storage can require a large amount of space, particularly if all these values are
the same. If all a compressible britkngine s values are identical, thEngine

stores that one value rather than many, many copies of the same value. These engines
can both save time as well as space. Initializing a compressible engine requires setting
only one value, not every value. Using less storage space may also permit more useful
values to be stored in cache, improving cache performance. Reading a value in a com-
pressedEngine using theread member function is as fast as reading a value in a
Brick Engine , but writing a value always requires executing an additiéhakton-
ditional. Thus, if anEngine infrequently has multiple different values during its life
time, aCompressibleBrick Engine may be faster than Brick Engine

If an Engine is created and its values are mostly read, not writteBpampress-
ibleBrick Engine may also be faster. Otherwise Baick Engine may be
preferable. Timing the same program using the two diffefengine types will re-

veal which is faster for a particular situation. In distributed computing, nkamgine s

may have few nonzero values €@mpressibleBrick Engine s may be prefer-

able. For distributed computing, a container’s domain is partitioned into regions each
computed by a separate processor Emdjine . If the computation is concentrated in
sections of the domain, margngine s may have few, if any, nonzero values. Thus,
CompressibleBrick Engine s may be preferable for distributed computing.

Both Brick and CompressibleBrick Engine s haveread andopera-

tor) member functions takinght andLoc parameters. The parameters should
match theArray ’s dimensionality. For example, AArray a has dimensionality 3,
a.read(int, int, int) anda(int, int, int) should be used. The
former returns a value that cannot be modified, while the latter can be changed.
Using theread member function can lead to faster code. Alternatively, an index

can be specified using laoc . For examplea.read(Loc<3>(1,-2,5)) and
a(Loc<3>(1,-2,5)) are equivalent taa.read(1,-2,5)) and a(1,-
2,5) .

119

Chapter 6. Engines

The Dynamic Engine supports changing domain sizes while a program is execut-
ing. It is basically a one-dimensionBrrick , explicitly storing values, but permitting

the number and order of stored values to change. Thus, it supports the same interface
asBrick except that all member functions are restricted to their one-dimensional ver-
sions. For examplggad andoperator() takeLoc<1> or oneint parameter.

In addition, the one-dimensional domain can be dynamically resized cseate
anddestroy

120

Chapter 7. Data-Parallel Expressions

In the previous chapters, we accessed container values one at a time. Accessing more
than one value in a container required a writing an explicit loop. Scientists and engineers
commonly operate on sets of values, treated as an aggregate. For example, a vector is a
one-dimension collection of data and two vectors can be added together. A matrix is a
two-dimensional collection of data, and a scalar and a matrix can be multipligataA

parallel expressiorsimultaneously uses multiple container values. POOMA supports
data-parallel expressions.

After introducing data-parallel expressions and statements, we present the corresponding
POOMA syntax. Then we present its implementation, which uses expression-template
technology. A naive data-parallel implementation might generate temporary variables,
cluttering a program’s inner loops and slowing its execution. Instead, POOMA uses
PETE, the Portable Expression Template Engine. Using expression templates, it con-
structs a parse tree of expressions and corresponding types, which is then quickly eval-
uated without the need for temporary variables.

7.1. Expressions with More Than One
Container Value

Science and math is filled with aggregated values. A vector contains several components,
and a matrix is a two-dimensional object. Operations on individual values are frequently
extended to operations on these aggregated values. For example, two vectors having
the same length are added by adding corresponding components. The product of two
matrices is defined in terms of sums and products on its components. The sine of an
array is an array containing the sine of every value in it.

A data-parallel expressiosimultaneously refers to multiple container values. Data-
parallel statements, i.e., statements using data-parallel expressions, frequently occur in
scientific programs. For example, the sum of two vectors v and w is written as v+w. Al-
gorithms frequently use data-parallel syntax. Consider, for example, computing the total
energy E as the sum of kinetic energy K and potential energy U. For a simple particle
subject to the earth’s gravity, the kinetic energy K equal$/2ynand the potential en-

ergy U equals mgh. These formulae apply to both an individual particle with a particular
mass m and height h and to an entire field of particles with masses m and heights h. Our
algorithm works with data-parallel syntax, and we would like to write the corresponding
computer program using data-parallel syntax as well.

121

Chapter 7. Data-Parallel Expressions

7.2. Using Data-Parallel Expressions

POOMA containers can be used in data-parallel expressions and statements. The basic
guidelines are simple:

- The C++ built-in and mathematical operators operate on an entire container by oper-
ating element-wise on its values.

- Binary operators operate only on containers with the same domain types and by com-
bining values with the same indices. If the result is a container, it has a domain equal
to the left operand’s domain.

- For assignment operators, the domains of the left operand and the right operand must
have the same type and be conformable, i.e., have the “same shape”.

The data-parallel operators operate element-wise on containers’ values. For example, if
A is a one-dimensional array,A is a one-dimensional array with the same size such
that the value at thd"iposition equals -A(i). IfA andB are two-dimensional\rray s

on the same domai+B is an array on the same domain with values equaling the sum
of corresponding values iA andB.

Binary operators operate on containers with the same domain types. The domain’s in-
dices need not be the same, but the result will have a domain equal to the left operand.
For example, the sum of afirray A with a one-dimensional interval [0,3] and an
Array B with a one-dimensional interval [1,2] is well-defined because both domains
are one-dimensional intervals. The result isamay with a one-dimensional inter-

val [0,3]. Its first and last entries equdls first and last entries, while its middle two
entries are the sumA&(1)+B(1) andA(2)+B(2) . We assume zero is the default
value for the type of values stored B1 A more complicated example of adding two
Array s with different domains is illustrated in Figure 7-1. Code for thAsey s

could be

Interval<1> H(0,2), 1(1,3), J(2,4);
Array<2, double, Brick> A(l,l), B(J,H);
/I ... fill A and B with values ...

.= A + B;

122

Chapter 7. Data-Parallel Expressions

Figure 7-1. Adding Array s with Different Domains

A+ B A B

a0 N a0

1 125|27]29] 1 125]27]29] a1

> 117]38(420 =2 (17|19|21] + 2 ¢ l19|21]23)

1 9|28 Lo le (1113 L (11]13]15)

o o o | |3|5|7]
o 1 2 34 Q0 1 23 3 o 1 2 3 4

AddingArray s with different domains is supported. Solid lines indicate the domains’
extent. Values with the same indices are added.

Both A and B have domains of two-dimensional intervals so they may be added, but
their domains’ extent differ, as indicated by the solid lines in the figure. The sum has
domain equal to the left operand’s domain. Values with the same indices are added. For
example A(2,2) andB(2,2) are addedB's domain does not include index (1,1)

so, when adding\(1,1) andB(1,1) |, the default value foB's value type is used.
Usually thisis 0. ThusA(1,1) + B(1,1) equals9 + 0.

Operations with botlArray s and scalar values are supported. Conceptually, a scalar
value can be thought of as &trray with any desired domain and having the same
value everywhere. For example, consider

Array<l, double, Brick> D(Interval<1>(7,10));
D += 2*D + 7,

2*D obeys the guidelines because the sc2laan be thought of as an array with the
same domain ad. It has the same valugeverywhere. Likewise the conceptual domain
for the scalaf is the same a2*D’s domain. Thus2*D(i)) + 7 s added td(i)
wherever index i is iD's domain. In practice, the toolkit does not first convert scalar
values to arrays but instead uses them directly in expressions.

Assignments to containers are also supported. The domain types of the assignment’s
left-hand side and its right-hand side must be the same. Their indices need not be the
same, but they must correspond. That is, the domains musiridjermable or have the

“same shape”, i.e., have the same number of indices for each dimension. For example,
the one-dimensional interval [0,3] is conformable to the one-dimensional interval [1,4]
because they both have the same number of indices in each dimension. The domains of
A andB, as declared

123

Chapter 7. Data-Parallel Expressions

Interval<1> H(0,2), 1(1,3), J(2,4), K(0,4);
Array<2, double, Brick> A(l,l), B(H,J), C(I,K);

are conformable because each dimension has the same number of iAdicekC are

not conformable because, while their first dimensions are conformable, their second
dimensions are not conformable. It has three indices while the other has five. We define
conformable container® be containers with conformable domains.

When assigning to a container, corresponding container values are assigned. (Since the
left-hand side and the right-hand side are conformable, corresponding values exist.) In
this code fragment,

Array<l, double, Brick> A(Interval<1>(0,1));
Array<l, double, Brick> B(Interval<1>(1,2));
A = B;

A(0) isassigned(1l) andA(1l) is assigned(2) .

Assigning a scalar value to @ray also is supported, but assigningAnray to a

scalar is not. A scalar value is conformable to any domain because, conceptually it can be
viewed as arArray with any desired domain and having the same value everywhere.
Thus, the assignmel® = 3 ensures every value i8 equals 3. Even though a scalar
value is conformable to anfrray , it is not an I-value so it cannot appear on the
left-hand side of an assignment.

Data-parallel expressions can involve typical mathematical functions and output opera-
tions. For examplesin(A) yields anArray with values equal to the sine of each of
Array A s values.dot(A,B) has values equaling the dot product of corresponding
values inArray s A andB. The contents of an entil&rray can be easily printed to
standard output. For example, the program

Array<l, double, Brick> A(Interval<1>(0,2));
Array<l, double, Brick> B(Interval<1>(1,3));
A = 1.0;

B = 2.0;

std::cout << A-B << std:endl;

yields (000:002:001) = 1 -1 -1 . The initial (000:002:001) indi-

cates theArray ’'s domain ranges from 0 to 2 with a stride of 1. The three values in
A-B follow.

124

Chapter 7. Data-Parallel Expressions

The following four tables list the data-parallel operators that operafercaly s. Table
7-1 lists standard C++ operators that can be appligdirtay s and also scalar values
if appropriate. Each unary operator takes®nay parameter and returns &rray .

The types of the twd\rray s need not be the same. For examplean take arAr-
ray<bool> , Array<int> , Array<long> , or any other value type to whidh

can be applied. The result is &xray<bool> . Each binary operator also returns an
Array . When specifying twdArray s or anArray and a scalar value, a full set of
operators is supported. When specifying/may and aTensor , TinyMatrix

or Vector , a more limited set of operators is supported. For examptecan take
two Array s, anArray and a scalar value, or a scalar value and\aray . If given

two Array s, corresponding values are used. If an argument is a scalar value, its same
value is the used with eadrray value. Thet supports the same set of parameters but
also supports adding drray and alTensor , anArray and alTinyMatrix , an
Array and aVector ,aTensor and anArray , aTinyMatrix and anAr-

ray , and aVector and anArray . For these cases, tigray must have a value
type that can be added to the other argument. For examplector can be added to
anArray of Vector s.

Table 7-1. Operators Permissible for Data-Parallel Expressions

supported operators

unary operators +,-,~, !
binary operators with at least odgray +,-,*,/,% & | ,", <, <=,>=,>, ==,
and at most one scalar value =, && || ,<<,>>

binary operators with at least odgray +,-,*,/,%& | ,", ==, 1=
and at most ondensor
TinyMatrix , or Vector

Mathematical functions that can be used in data-parallel expressions appear in Table 7-2.
For example, applyingos to anArray of values with typel yields anArray with
the same type. The functions are split into five sections:

125

Chapter 7. Data-Parallel Expressions
- trigonometric and hyperbolic functions,
- functions computing absolute values, rounding functions, and modulus functions,
- functions computing powers, exponentiation, and logarithms,
- functions involving complex numbers, and

- functions for operating on matrices and tensors.

Several data-parallel functions require inclusion of header files declaring their underly-
ing element-wise function. These header files are listed at the beginning of each section.
For the data-parallel operator to be applicable, it must operate oArttay ’s type.

For examplecos can be applied oArray s ofint , double , and everbool , but
applying onArray s of pointers is not supported becadss cannot be called with a
pointer argument.

Two functions deserve special explanation. FETE_identity function applies

the identity operation to the array. That is, the returned array has values equaling the
argument’s valuegoow?2, pow3, and pow4 provide fast ways to compute squares,
cubes, and fourth powers of their arguments.

Table 7-2. Mathematical Functions Permissible for Data-Parallel Expressions

function effect
Trigonometric and Hyperbolic Functions#include <math.h>

Array<T> cos (const Returns the cosines of tifgray s
Array<T>& A) values.

Array<T> sin (const
Array<T>& A)
Array<T> tan (const
Array<T>& A)
Array<T> acos (const
Array<T1>& A)
Array<T> asin (const
Array<T1>& A)
Array<T> atan (const
Array<T1>& A)
Array<T> atan2 (const
Array<T1>& A, const
Array<T2>& B)

Returns the sines of th&rray 's values.

Returns the tangents of tgray 's
values.

Returns the arc cosines of theray 's
values.

Returns the arc sines of tiigray 's
values.

Returns the arc tangents of tAgray 's
values.

Computes the arc tangents of the values

from the division of elements iB by the

elements inA. The resulting values are the

signed angles in the range to ,
inclusive.

126

function

Array<T> atan2 (const
Array<T1>& A, const T2&

y

Array<T> atan2 (const T1l&
[, const Array<T2>& B)

Array<T> cosh (const
Array<T>& A)
Array<T> sinh (const
Array<T>& A)
Array<T> tanh (const
Array<T>& A)

Chapter 7. Data-Parallel Expressions

effect
Computes the arc tangents of the values
from the division ofr by the elements
in A. The resulting values are the signed
angles in the ranger-to «, inclusive.
Computes the arc tangents of the values
from the division of elements iB by | .
The resulting values are the signed angles
in the range = to «, inclusive.
Returns the hyperbolic cosines of the
Array 's values.
Returns the hyperbolic sines of the
Array 'svalues.
Returns the hyperbolic tangents of the
Array ’svalues.

Absolute Value, Rounding, and Modulus#include <math.h>

Functions

Array<T> fabs (const
Array<T1>& A)
Array<T> ceil (const
Array<T1>& A)

Array<T> floor (const
Array<T1>& A)

Array<T> fmod (const
Array<T1>& A, const
Array<T2>& B)

Array<T> fmod (const
Array<T1>& A, const T2&

g

Returns the absolute values of the floating
point numbers in thdrray .

For each of thé\rray ’s values, return

the integer larger than or equal to it (as a
floating point number).

For each of thé\rray ’s values, return

the integer smaller than or equal to it (as a
floating point number).

Computes the floating-point modulus
(remainder) ofA’s values with the
corresponding value iB. The results

have the same signs Asand absolute
values less than the absolute value8of
Computes the floating-point modulus
(remainder) ofA’s values withr . The
results have the same signsfAaand
absolute values less than the absolute
value ofr .

127

function
Array<T> fmod (const T1&
[, const Array<T2>& B)

Chapter 7. Data-Parallel Expressions

effect

Computes the floating-point modulus
(remainder) of with the values irB. The
results have the same signd aand
absolute values less than the absolute
values ofB.

Powers, Exponentiation, and Logarithmi#include <math.h>

Functions

Array<T> PETE_identity
(const Array<T>& A)
Array<T> sqrt (const
Array<T>& A)

Array<T> pow (const
Array<T1>& A, const
Array<T2>& B)

Array<T> pow (const
Array<T1>& A, const T2&
r

Array<T> pow (const T1l&
[, const Array<T2>& B)
Array<T> pow2 (const
Array<T>& A)

Array<T> pow3 (const
Array<T>& A)

Array<T> pow4 (const
Array<T>& A)

Array<T> ldexp (const
Array<T1>& A, const
Array<int>& B)

Array<T> ldexp (const
Array<T1>& A, int r)
Array<T> |dexp (const T1l&
[, const Array<int>& B)
Array<T> exp (const
Array<T>& A)

Array<T> log (const
Array<T>& A)

Returns théArray . That s, it applies the
identity operation.

Returns the square roots of tAgray 's
values.

RaisesA's values by the corresponding
power inB.

RaisesA's values by the power .

Raised by the powers irB.

Returns the squares 8fs values.
Returns the cubes &s values.
Returns the fourth powers éfs values.

Multiplies A’'s values by two raised to the
corresponding value iB.

Multiplies A’'s values by two raised to the
I th pOWer.

Multiplies | by two raised to the values
in B.

Returns the exponentiations of the
Array 'svalues.

Returns the natural logarithms of the
Array ’svalues.

128

function
Array<T> log10 (const
Array<T>& A)

Functions Involving Complex Numbers

Chapter 7. Data-Parallel Expressions

effect

Returns the base-10 logarithms of the
Array 'svalues.
#include <complex>

Array<T> real (const
Array<complex<T>>& A)
Array<T> imag (const
Array<complex<T>>& A)
Array<T> abs (const
Array<complex<T>>& A)
Array<T> abs (const
Array<T>& A)

Array<T> arg (const
Array<complex<T>>& A)

Array<T> norm (const
Array<complex<T>>& A)
Array<complex<T>> conj
(const Array<complex<T>>&
A)

Array<complex<T>> polar
(const Array<T1>& A,
const Array<T2>& B)
Array<complex<T>> polar
(const T1& I, const
Array<T2>& A)
Array<complex<T>> polar
(const Array<T1>& A,
const T2& r)

Returns the real parts éfs complex
numbers.

Returns the imaginary parts 8fs

complex numbers.

Returns the absolute values (magnitudes)
of A’'s complex numbers.

Returns the absolute values&§ values.

Returns the angle representations (in
radians) of the polar representationsfs
complex numbers.

Returns the squared absolute valuef\sf
complex numbers.

Returns the complex conjugatesAi$
complex numbers.

Returns the complex numbers created
from polar coordinates (magnitudes and
phase angles) in correspondiAgray s.
Returns the complex numbers created
from polar coordinates with magnitudie
and phase angles in tihgray .

Returns the complex numbers created
from polar coordinates with magnitudes in
theArray and phase angle.

Functions Involving Matrices and Tensorinclude "Pooma/Tiny.h"

T trace (const Array<T>&
A)
T det (const Array<T>& A)

Array<T> transpose (const
Array<T>& A)

Array<T> symmetrize
(const Array<T>& A)

Returns the sum of th&'s diagonal
entries, viewed as a matrix.

Returns the determinant & viewed as a
matrix.

Returns the transpose Af viewed as a
matrix.

Returns the tensors & with the
requested output symmetry.

129

function

Array<T> dot (const
Array<T1>& A, const
Array<T2>& B)

Array<T> dot (const
Array<T1>& A, const T2&
r

Array<T> dot (const T1l&
[, const Array<T2>& A)

Array<Tensor<T>>
outerProduct (const
Array<T1>& A, const
Array<T2>& B)

Array<Tensor<T>>
outerProduct (const T1&
[, const Array<T2>& A)

Array<Tensor<T>>
outerProduct (const
Array<T1>& A, const T2&

y

TinyMatrix<T>
outerProductAsTinyMatrix
(const Array<T1>& A,
const Array<T2>& B)

TinyMatrix<T>
outerProductAsTinyMatrix
(const T1& I, const
Array<T2>& A)

Chapter 7. Data-Parallel Expressions

effect
Returns the dot products of values in the
two Array s. Value typel equals the
type of thedot operating onl'1l andT2.
Returns the dot products of values in the
Array withr . Value typeT equals the
type of thedot operating onl1 andT2.
Returns the dot products bfwith values
intheArray . Value typeTl equals the
type of thedot operating onl'1 andT2.
Returns tensors created by computing the
outer product of corresponding vectors in
the twoArray s. Value typel equals the
type of the product ol 1 andT2. The
vectors must have the same length.
Returns tensors created by computing the
outer product of with the vectors in the
Array . Value typeT equals the type of
the product off 1 andT2. The vectors
must have the same length.
Returns tensors created by computing the
outer product of vectors in th&rray
with r . Value typeT equals the type of
the product off1 andT2. The vectors
must have the same length.
Returns matrices created by computing
the outer product of corresponding vectors
in the twoArray s. Value typel equals
the type of the product of 1 andT2. The
vectors must have the same length.
Returns matrices created by computing
the outer product df with the vectors in
the Array . Value typeTl equals the type
of the product off 1 andT2. The vectors
must have the same length.

130

function

TinyMatrix<T>
outerProductAsTinyMatrix
(const Array<T1>& A,
const T2& r)

Chapter 7. Data-Parallel Expressions

effect
Returns matrices created by computing
the outer product of the vectors in the
Array withr . Value typel equals the
type of the product ol 1 andT2. The
vectors must have the same length.
Type restrictions from how the underlying
functions operate on individual elements
may restrict permissible choices for the
template type parameters.

Comparison functions appear in Table M8ax andmin functions supplement named
comparison functions. For example] andLE compute the same thing as tkeand

<= operators.

Table 7-3. Comparison Functions Permissible for Data-Parallel Expressions

function

Array<T> max (const
Array<T1>& A, const
Array<T2>& B)

Array<T> max (const T1&
[, const Array<T2>& A)
Array<T> max (const
Array<T1>& A, const T2&
r

Array<T> min (const
Array<T1>& A, const
Array<T2>& B)

Array<T> min (const T1l&
[, const Array<T2>& A)
Array<T> min (const
Array<T1>& A, const T2&
r

Array<bool> LT (const
Array<T1>& A, const
Array<T2>& B)

effect
Returns the maximum of corresponding
Array values.

Returns the maximums &f with the
Array ’svalues.

Returns the maximums of therray s
values withr .

Returns the minimum of corresponding
Array values.

Returns the minimums df with the
Array ’svalues.

Returns the minimums of th&rray ’s
values withr .

Returns booleans from using the less-than
operator< to compare corresponding
Array values inA andB.

131

function
Array<bool> LT (const T1&
r, const Array<T2>& A)

Array<bool> LT (const
Array<T1>& A, const T2&
y

Array<bool> LE (const
Array<T1>& A, const
Array<T2>& B)
Array<bool> LE (const T1&
[, const Array<T2>& A)

Array<bool> LE (const
Array<T1>& A, const T2&
y

Array<bool> GE (const
Array<T1>& A, const
Array<T2>& B)

Array<bool> GE (const T1&
[, const Array<T2>& A)

Array<bool> GE (const
Array<T1>& A, const T2&
)

Array<bool> GT (const
Array<T1>& A, const
Array<T2>& B)

Array<bool> GT (const T1&
[, const Array<T2>& A)

Array<bool> GT (const
Array<T1>& A, const T2&
r

Array<bool> EQ (const
Array<T1>& A, const
Array<T2>& B)

Chapter 7. Data-Parallel Expressions

effect
Returns booleans from using the less-than
operator< to compard with the
Array 'svalues.
Returns booleans from using the less-than
operator< to compare thé\rray ’s
values withr .
Returns booleans from using the
less-than-or-equal operateF to
compareArray values inA andB.
Returns booleans from using the
less-than-or-equal operatsr to
compard with theArray 's values.
Returns booleans from using the
less-than-or-equal operateF to
compare thé\rray ’s values withr .
Returns booleans from using the
greater-than-or-equal operater to
compareArray values inA andB.
Returns booleans from using the
greater-than-or-equal operater to
compard with theArray 's values.
Returns booleans from using the
greater-than-or-equal operater to
compare thé\rray ’s values withr .
Returns booleans from using the
greater-than operater to compare
Array values inA andB.
Returns booleans from using the
greater-than operatorto compard with
theArray ’s values.
Returns booleans from using the
greater-than operater to compare the
Array s values withr .
Returns booleans from determining
whether correspondingrray values in
A andB are equal.

132

Chapter 7. Data-Parallel Expressions

function effect
Array<bool> EQ (const T1& Returns booleans from determining
[, const Array<T2>& A) whetherl equals théArray s values.
Array<bool> EQ (const Returns booleans from determining
Array<T1>& A, const T2& whether théArray ’s values equat .
9
Array<bool> NE (const Returns booleans from determining
Array<T1>& A, const whether correspondingrray values in
Array<T2>& B) A andB are not equal.
Array<bool> NE (const T1l& Returns booleans from determining
l, const Array<T2>& A) whetherl does not equal thArray s
values.
Array<bool> NE (const Returns booleans from determining
Array<T1>& A, const T2& whether théArray ’s values are not
r equal tor .

The table of miscellaneous functions (Table 7-4) contains two functjpekeCast
casts all values in aArray to the type specified by its first parameter. There
function generalizes the trinafy; operator. Using its firsArray argument as boolean
values, it returns aArray of just two valuest andf .

Table 7-4. Miscellaneous Functions Permissible for Data-Parallel Expressions

function effect

Array<T> peteCast (const Returns the casting of th&rray 's

T1&, const Array<T>& A) values to typel 1.

Array<T> where (const Generalizes th@: operator, returning an
Array<T1>& A, const T2& Array oft andf values depending on
t, const T3& f) whetherA’s values are true or false,

respectively.

Throughout this chapter, we illustrate data-parallel expressions and statements operating
on all of a container’s values. Frequently, operating on a subset is useful. In POOMA,
a subset of a container’s values is called a view. Combining views and data-parallel ex-
pressions will enable us to more succinctly and more easily writBdaf2d diffusion
program. Views are discussed in the next chapter.

133

Chapter 7. Data-Parallel Expressions

7.3. Implementation of Data-Parallel Statements

7.3.1.

Data-parallel statements involving containers occur frequently in the inner loops of sci-
entific programs so their efficient execution is important. A naive implementation for
these statements may create and destroy containers holding intermediate values, slow-
ing execution considerably. In 1995, Todd Veldhuizen and David Vandevoorde each de-
veloped an expression-template technique to transform arithmetic expressions involv-
ing array-like containers into efficient loops without using temporaries. Despite its per-
ceived complexity, POOMA incorporated the technology. The framework called PETE,
the Portable Expression Template Engine framework, is also available separately from
POOMA athttp://www.acl.lanl.gov/pete/.

In this chapter, we first describe how a naive implementation may slow execution. Then,
we describe PETE'’s faster implementation. PETE converts a data-parallel statement into
a parse tree, rather than immediately evaluating it. The parse tree has two representa-
tions. Its run-time representation holds run-time values. Its compile-time representation
records the types of the tree’s values. After a parse tree for the entire statement is con-
structed, it is evaluated. Since it is a data-parallel statement, this evaluation involves at
least one loop. At run time, for each loop iteration, the value of one container value is
computed and assigned. At compile time, when the code for the loop iteration is pro-
duced, the parse tree’s types are traversed and code is produced without the need for any
intermediate values. We present the implementation in Section 7.3.2, but first we explain
the difficulties caused by the naive implementation.

Naive Implementation

A conventional implementation to evaluate data-parallel expressions might overload
arithmetic operator functions. Consider this program fragment:

Interval<1> 1(0,3);

Array<1, double, Brick> A(l), B(l);
A = 1.0;

B = 2.0;

A += -A + 2*B;

std::cout << A << std::endl;

Our goal is to transform the data-parallel statem&ntr= -A + 2*B into a single

loop, preferably without using intermediary containers. To simplify notationAlet
abbreviate the typArray<l, double, Brick>

134

http://www.acl.lanl.gov/pete/

7.3.2.

Chapter 7. Data-Parallel Expressions

Using overloaded arithmetic operators would require using intermediate containers to
evaluate the statement. For example, the sum’s left operdndould be computed

by the overloaded unary operatdr operator-(const Ar&) , Which would
produce an intermediatArray . Ar operator*(double, const Ar&)

would produce another intermediadgray holding 2*B . Yet another intermediate
container would hold their sum, all before performing the assignment. Thus, three inter-
mediate containers would be created and destroyed. Below, we show these are unneces-
sary.

Portable Expression Template Engine

POOMA uses PETE, the Portable Expression Template Engine framework, to evaluate
data-parallel statements using efficient loops without intermediate values. PETE uses
expression-template technology. Instead of evaluating a data-parallel statement’s subex-
pressions at solely at run time, it evaluates the code at both run time and at compile
time. At compile time, it builds a parse tree of the required computations. The parse
tree’s type records the types of each of its subtrees. Then, the parse tree is evaluated at
compile time using an evaluator determined by the left-hand side’s type. This container
type determines how to loop through its domain. Each loop iteration of the resulting run
time code, the corresponding value of the right-hand side is evaluated. No intermediate
loops or temporary values are needed.

Before explaining the implementation, let us illustrate using our example staténent
+= -A + 2*B . Evaluating the right-hand side creates a parse tree similar to the one
in Figure 7-2. For example, the overloaded unary minus operator yields a tree node
representingA , having a unary-minus function object, and having type

Expression<UnaryNode<OpMinus,Ar>>

The binary nodes continue the construction process yielding a parse tree object for the
entire right-hand side and having type

Expression<
BinaryNode<OpAdd,
UnaryNode<OpMinus, Ar>,
BinaryNode<OpMultiply<Scalar<int>,Ar>>>

Evaluating the left-hand side yields an object represerfing

135

Chapter 7. Data-Parallel Expressions
Figure 7-2. Annotated Parse Tree forA + 2*B

Exoressicn

(+Binar vilode<Ooadd,
_

Unaryllode<0oMiavs, (= f} *) Binaryllode<CoMultizsly,

o

e e

Ar{a} (2)

B |Ar
- .
Scalar<iat>

The parse tree forA + 2*B with type annotations. The complete type of a node
equals the concatenation of the preorder traversal of annotated types.

Finally, the assignment operater~ calls theevaluate function corresponding to

the left-hand side’s type. At compile time, it produces the code for the computation.
Since this templated function is specialized on the type of the left-hand side, it gener-
ates a loop iterating through the left-hand side’s container. To produce the loop body,
theforEach function produces code for the right-hand side expression at a specific
position using a post-order parse-tree traversal. At a leaf, this evaluation queries the
leaf’s container for a specified value or extracts a scalar value. At an interior node, its
children’s results are combined using its function operator. One loop performs the entire
assignment. It is important to note that the type of the entire right-hand side is known at
compile time. Thus, all of thesevaluate ,forEach , and function operator func-

tion calls can be inlined at compile time to yield simple code without any temporary
containers and hopefully as fast as hand-written loops!

To implement this scheme, we need POOMA (really PETE) code to both create the parse
tree and to evaluate it. We describe parse tree creation first. Parse trees consist of leaves,
UnaryNode s, BinaryNode s, andTrinaryNode s. SinceTrinaryNode s

are similar toBinaryNode s, we omit describing them. BinaryNode s three
template parameters correspond to the three things it must store:

Op

the type of the node’s operation. For example, @@Add type represents adding
two operands together.

Left
the type of the left child.

136

Chapter 7. Data-Parallel Expressions
Right
the type of the right child.
The node stores the left and right children’s nodes.

BinaryNode does not need to store any representation of the node’s operation.
Instead theOp type is an empty structure defining a function object. For example,
OpAdds function object is declared as

template<class T1, class T2>

inline typename BinaryReturn<T1, T2, OpAdd>:Type_t
operator()(const T1 &a, const T2 &b) const

{

return (a + b);

}

Since it has two template arguments, it can be applied to operands of any type.
Because of C++ type conversions, the type of the result is determined using the
BinaryReturn traits class. Consider adding ant and adouble . Bina-
ryReturn<int, double, OpAdd>::Type_t equalsdouble . Inlining

the function ensures all this syntax is eliminated, leaving behind just an addition.

UnaryNode s are similar but have only two template parameters and store only one
child.

Parse tree leaves are created by @reateLeaf class and its specializations. The
default leaf is a scalar so it has the most general definition:

template<class T>
struct CreatelLeaf

{
typedef Scalar<T> Leaf t;

inline static
Leaf t make(const T &a)

{

return Scalar<T>(a);

}
h

137

Chapter 7. Data-Parallel Expressions

The Scalar class stores the scalar value. TGeeateLeaf 's Leaf t type in-

dicates its type. Thstatic make function is invoked by an overloaded operator
function when creating its children.

TheCreatelLeaf class is specialized fdkrray s:

template<int Dim, class T, class EngineTag>
struct CreatelLeaf<Array<Dim, T, EngineTag> >

{
typedef Array<Dim, T, EngineTag> Input_t;
typedef Reference<Input t> Leaf t;
typedef Leaf t Return _t;
inline static
Return_t make(const Input_t &a)
{
return Leaf t(a);
}
h

TheArray objectis stored asReference |, rather than directly as for scalars.

To simplify the next step of overloading arithmetic operators, a parse tree’s topmost type
is anExpression

Now that we have defined the node classes, the C++ arithmetic operators must be
overloaded to return the appropriate parse tree. For example, the unary minus oper-
ator operator- is overloaded to accept array argument. It should create a
UnaryNode having anArray as its child, which will be a leaf:

template<int D1,class T1,class E1>
inline typename MakeReturn<UnaryNode<OpUnaryMinus,
typename CreatelLeaf<Array<D1,T1,E1>>:Leaf t>>::
Expression_t
operator-(const Array<D1,T1,E1> &)
{
typedef UnaryNode<OpUnaryMinus,
typename CreatelLeaf<Array<D1,T1,E1> >:lLeaf t> Tree t;
return MakeReturn<Tree_t>::make(Tree_t(
CreateLeaf<Array<D1,T1,E1> >:make(l)));

138

Chapter 7. Data-Parallel Expressions

Tree t specifies the node’s unique type. Constructing the object first involves creating
a leaf containing thérray reference through the call to

CreateLeaf<Array<D1,T1,E1> >::make

The call toMakeReturn<Tree_t>::make permits programmers to store trees
in different formats. The POOMA implementation stores therxpgression s. The
function’s return type is similar to theeturn statement except it extracts the type
from Expression ’sinternalExpression_t type.

Specializing all the operators férray s using such complicated functions is likely to
be error-prone so PETE provides a way to automate their creation. UsMgkeOp-
erators command with this input:

classes
ARG = "int D[n],class T[n],class E[n]"
CLASS = "Array<DI[n],T[n],E[n]>"

automatically generates code for all the needed operators. The “[n]” strings are used to
number arguments for binary and ternary operators.

Assignment operators must also be specializedday . Inside theArray class
definition, each such operator just invokes &ssign function with a corresponding
function object. For examplegperator+= invokesassign(*this, rhs,
OpAddAssign()) . rhs is the parse tree object for the right-hand side. Calling
this function invoke®valuate , which begins the evaluation.

Before we explain the evaluation, let us summarize the effect of the code so far de-
scribed. If we are considering run time evaluation, parse trees for the left-hand and
right-hand sides have been constructed. If we are considering compile time evaluation,
the types of these parse trees are known. At compile timeeWaduate function
described below will generate a loop iterating through the left-hand side container’s do-
main. The loop’s body will have code computing a container’s value. At run time, this
code will read values from containers, but the run-time parse tree object itself will not
traversed!

We now explore the evaluation, concentrating on compile time, not run éwvel-

uate is an overloaded function specialized on the type of the left-hand side. In our
example, the left-hand side is a one-dimensiohrlay , so evaluate(const

Ar& a, const Op& op, const RHS& rhs) is inlined into a loop like

139

Chapter 7. Data-Parallel Expressions

int end = a’'s domain[0].first() + a's domain[0].length();
for (int i = a’'s domain[0].first(); i < end; ++i)
op(a(i), rhs.read(i));

a is the arraypp is a function object representing the assignment operationttshd
is the right-hand side’s parse tree.

Evaluatingrhs.read(i) inlines into a call to thdorEach function. This func-
tion performs acompile-timepost-order parse-tree traversal. Its general form is

forEach(const Expression& e, const LeafTag& f,
const CombineTag& c).

That is, it traverses the nodes of tRpression objecte. At leaves, it applies the
operation specified blyeafTag f . Atinterior nodes, it combines the results using the
CombineTag operatorc. Itinlines into a call to

ForEach<Expression, LeafTag, CombineTag>::apply(e, f, c)

Theapply function continues the traversal through the tree. For our exam@&:

Tag equalsEvalLeaf<1> ,andCombineTag equalsOpCombine. The former
indicates that, when reaching a leaf, the leaf should be a one-dimensional container
which should be evaluated at the position stored inEvalLeaf object. TheOp-
Combine class applies an interior nodeéB3pto the results of its children.

ForEach structures are specialized for the various node types. For example, the spe-
cialization forUnaryNode is

template<class Op, class A, class FTag, class CTag>
struct ForEach<UnaryNode<Op, A>, FTag, CTag>
{
typedef typename ForEach<A,FTag,CTag>::Type t TypeA t;
typedef typename
Combinel<TypeA t,0p,CTag>:Type_t Type_t;
inline static
Type_t apply(const UnaryNode<Op,A>&expr,const FTag&f,
const CTag& c)

{
return Combinel<TypeA_t, Op, CTag>:

140

Chapter 7. Data-Parallel Expressions

combine(ForEach<A, FTag, CTag>::
apply(expr.child(), f, c), c);
}
h

Since this structure is specialized fdnaryNode s, the first parameter of igtatic

apply function is aUnaryNode . After recursively calling its child, it invokes the
combination function indicated by tHeéombinel traits class. In our example, thee
function object should be applied. Other combiners have different roles. For example,
using theNullCombine tag indicates the child’s result should not be combined but
occurs just for side effects.

Leaves are treated as the default behavior so they are not specialized:

template<class Expr, class FTag, class CTag>
struct ForEach
{
typedef typename
LeafFunctor<Expr, FTag>:Type_t Type_t;
inline static
Type_t apply(const Expr&expr,const FTag&f,const CTag&)
{
return LeafFunctor<Expr, FTag>:apply(expr, f);
}
h

Thus,LeafFunctor 's apply member is calledExpr represents the expression
type, e.g., arArray , andFTag is theLeafTag , e.g.,EvalLeaf . Theleaf-
Functor specialization foArray passes the index stored by thealLeaf object
to theArray 's engine, which returns the corresponding value.

If one uses an aggressive optimizing compiler, code resulting fronevaduate
function corresponds to this pseudocode:

int end = A.domain[0].first() + A.domain[0].length();
for (int i = A.domain[0].first(); i < end; ++i)
A.engine(i) += -A.engine.read(i)+2*B.engine.read(i);

The loop iterates throughA's domain, usingArray 's engines to obtain values and as-
signing values. Notice there is no use of the run-time parse tree so the optimizer can

141

Chapter 7. Data-Parallel Expressions

eliminate the code to construct it. All the work to construct the parse tree by overload-
ing operators is unimportant at run time, but it certainly helped the compiler produce
improved code.

PETE’s expression template technology may be complicated, using parse trees and their
types, but the produced code is not. Using the technology is also easy. All data-parallel
statements are automatically converted. In the next chapter, we explore views of con-
tainers, permitting use of container subsets and making data-parallel expressions even
more useful.

142

Chapter 8. Container Views

A view of a containels a container accessing a subset of C's domain and values. The
subset can include all of the container’'s domain. A “view” is so named because it is a
different way to access, or view, another container’s values. Both the container and its
view share the same underlying engine so changing values in one also changes them in

the other.

A view is created by following a container’s name by parentheses containing a domain.
For example, consider this code extracted from Example 3-3 in Section 3.3.

Interval<1> N(O, n-1);

Interval<2> vertDomain(N, N);

Interval<1> I(1,n-2);

Interval<1> J(1,n-2);

Array<2, double, Brick> a(vertDomain);

Array<2, double, Brick> b(vertDomain);

a(l,J) = (1.0/9.0) *
(b(1+1,J+1) + b(I+1,J) + b(I+1,J-1) +
bl ,J+1) + b(l J) + b(l ,J-1) +
b(l-1,J+1) + b(l-1,J) + b(I-1,J-1));

The last statement creates ten views. For exangfle]) creates a view o using
the smaller domain specified byandJ . This omits the outermost rows of columnsaof
The views ofb illustrate the use of views in data-parallel statemelnft.1,J-1)

has a subset shifted up one row and left one column compared@ith

143

Appendix A. DANGER: Programming
with Templates

POOMA extensively uses C+Hemplate to support type polymorphism without incur-
ring any run-time cost. In this chapter, we briefly introduce using templates in C++
programs by relating them to “ordinary” C++ constructs such as values, objects, and
classes. The two main concepts underlying C++ templates will occur repeatedly:

- Template programming constructs execute at compile time, not run time. That is, tem-
plate operations occur within the compiler, not when a program runs.

- Templates permit declaring families of classes using a single declaration. For ex-
ample, theArray template declaration permits usidgray s with many different
value types, e.g., arrays of integers, arrays of floating point numbers, and arrays of
arrays.
For those interested in the implementation of POOMA, we close the section with a
discussion of some template programming concepts used in the implementation but not
likely to be used by POOMA users.

A.1l. Templates Execute at Compile-Time

POOMA uses C++ templates to support type polymorphism without incurring any run-
time cost as a program executes. All template operations are performed at compile time
by the compiler.

Prior to the introduction of templates, almost all of a program’s interesting computation
occurred when it was executed. When writing the program, the programrpesgaam-

ming time would specify which statements and expressions will occur and which types
to use. Atcompile timethe compiler would convert the program’s source code into an
executable program. Even though the compiler uses the types to produce the executable,
no interesting computation would occur. AIn time the resulting executable program
would actually perform the operations.

The introduction of templates permits interesting computation to occur while the com-
piler produces the executable. Most interesting is template instantiation, which produces
a type at compile time. For example, theray “type” definition requires template
parameter®im, T, andEngineTag , specifying its dimension, the type of its values,

144

Appendix A. DANGER: Programming with Templates

and itsEngine type. To use this, a programmer specifies values for the template pa-
rametersArray<2,double,Brick> specifies a dimension of 2, a value type

of double , and theBrick Engine type. At compile time, the compiler creates a
type definition by substituting the values for the template parameters in the templatized
type definition. The substitution is analogous to the run-time application of a function to
specific values.

All computation not involving run-time input or output can occur at programming time,
compile time, or run time, whichever is more convenient. At programming time, a pro-
grammer can perform computations by hand rather than writing code to compute it.
C++ templates are Turing-complete so they can compute anything computable. Unfor-
tunately, syntax for compile-time computation is more difficult than for run-time com-
putation. Also current compilers are not as efficient as code executed by hardware. Run-
time C++ constructs are Turing-complete so using templates is unnecessary. Thus, we
can shift computation to the time which best trades off the ease of expressing syntax
with the speed of computation by programmer, compiler, or computer chip. For ex-
ample, POOMA uses expression template technology to speed run-time execution of
data-parallel statements. The POOMA developers decided to shift some of the computa-
tion from run-time to compile-time using template computations. The resulting run-time
code runs more quickly, but compiling the code takes longer. Also, programming time
for the POOMA developers increased significantly, but, most users, who are usually
most concerned about decreasing run times, benefited.

A.2. Template Programming for POOMA Users

Most POOMA users need only understand a subset of available constructs for template
programming. These constructs include

- reading template declarations and understanding template parameters, both of which
are used in this book.

- template instantiation, i.e., specifying a particular type by specifying values for tem-
plate parameters.

+ nested type names, which are types specified within a class definition.
We discuss each of these below.

Templates generalize writing class declarations by permitting class declarations depen-
dent on other types. For example, consider writing a class storing a pair of integers and
a class storing a pair of doubles. See Example A-1. Almost all of the code for the two

145

Appendix A. DANGER: Programming with Templates

definitions is the same. Both of these definitions define a class with a constructor and
storing two values nameléft andright having the same type. Only the classes’
names and its use of types differ.

Example A-1. Classes Storing Pairs of Values

/I Declare a class storing a pair of integers.
struct pairOfints {
pairOfints(const int& left, const int& right)
. left_(left), right_(right) {}

int left_;
int right_;
h

/I Declare a class storing a pair of doubles.
struct pairOfDoubles {
pairOfDoubles(const double& left, const double& right)
. left_(left), right_(right) {}

double left_;
double right_;

J§

Using templates, we can use a template parameter to represent their different uses of
types and write one templated class definition. See Example A-2. The templated class
definition is a copy of the common portions of the two preceding definitions. Because
the two definitions differ only in their use of that anddouble types, we replace

these concrete types with a template paramé&teWwe precede not follow, the class
definition withtemplate <typename T> . The constructor's parameters’ types

are changed td, as are the data members’ types.

Example A-2. Templated Class Storing Pairs of Values

/I Declare a template class storing a pair of values
/I with the same type.
template <typename T> // (1)

146

Appendix A. DANGER: Programming with Templates

struct pair {
pair(const T& left, const T& right) // (2)
. left_(left), right_(right) {}

T left ; // 3)
T right_;
h

/l Use a class storing a pair of integers. 4)
pair<int> pairl,;

I/l Use a class storing a pair of doubles;
pair<double> pair2;

(1) Template parameters are written before, not after, a class name.
(2) The constructor has two parameters of tgoast T& .
(3) An object stores two values having type

(4) To use a templated class, specify the template parameter’s argument after the class’s
name and surrounded by angle brackets)(

To use a template class definition, template arguments follow the class name sur-
rounded by angle brackets:¥). For example pair<int> instantiatesthe pair
template class definition with equal toint . That is, the compiler creates a definition

for pair<int> by copyingpair ’s template definition and substitutirigt for

each occurrence df. The copy omits the template parameter declaraémplate
<typename T> at the beginning of its definition. The result is a definition exactly
the same apairOfints

As we mentioned above, template instantiation is analogous to function application. A
template class is analogous to a function; it is a function from types and constants to
classes. The analogy between compile-time and run-time programming constructs can
be extended. Table A-1 lists these correspondences. For example, at run time, values
consist of things such as integers, floating point numbers, pointers, functions, and ob-
jects. Programs compute by operating on these values. The compile-time values include
types, and compile-time operations use these types. For both run-time and compile-time
programming, C++ defines default sets of values that all conforming compilers must
support. For example and6.022e+23 are run-time values that any C++ compiler
must accept. It must also accept thé , bool , andint* types.

147

Appendix A. DANGER: Programming with Templates

Table A-1. Correspondences Between Run-Time and Compile-Time Constructs

programming run time compile time

construct

values integers, strings, objects, types, ...
functions, ...

create a value to store object creation class definition

multiple values
values stored within a data member, member nested type name, nested

collection function class, static member
function, constant integral
values

placeholder for “any variable, e.g., “any int” template argument, e.g.,

particular value” “any type”

packaging repeated A function generalizes a A template class

operations particular operation appliedjeneralizes a particular

to different values. The class definition using
function parameters are different types. The
placeholders for particular template parameters are

values. placeholders for particular
values.
application Use a function by Use a template class by
appending function appending template
arguments surrounded by arguments surrounded by
parentheses. angle brackets (<>).

The set of supported run-time and compile-time values can be extended. Run-time values
can be extended by creating new objects. Although not part of the default set of values,
these objects are treated and operated on as values. To extend the set of compile-time
values, class definitions are written. For example, Example A-1 declares two new types
pairOfints andpairOfDoubles . Although not part of the set of built-in types,

these types can be used in the same way that any other types can be used, e.g., declaring
variables.

Functions generalize similar run-time operations, while template class generalize similar
class definitions. A function definition generalizes a repeated run-time operation. For
example, consider repeatedly printing the largest of two numbers:

std::cout << (3 > 4 ? 3 : 4) << std:endl,
std::cout << (4 > -13 ? 4 : -13) << std::endl;

148

Appendix A. DANGER: Programming with Templates

std::cout << (23 > 4 ? 23 : 4) << std::endl;
std::cout << (0 > 3 ? 0 : 3) << std::endl,

Each statement is exactly the same except for the repeated two values. Thus, we can
generalize these statements writing a function:

void maxOut(int a, int b)
{ std::cout << (a > b ? a : b) << std::endl; }

The function’s body consists of the statement with variables substituted for the two par-
ticular values. Each parameter variable is a placeholder that, when used, holds one par-
ticular value among the set of possible integral values. The function must be named to
permit its use, and declarations for its two parameters follow. Using the function simpli-
fies the code:

maxOut(3, 4);
maxOut(4, -13);
maxOut(23, 4);
maxOut(0, 3);

To use a function, the function’s name precedes parentheses surrounding specific values
for its parameters, but the function’s return type is omitted.

A template class definition generalizes repeated class definitions. If two class definitions
differ only in a few types, template parameters can be substituted. Each parameter is
a placeholder that, when used, holds one particular value, i.e., type, among the set of
possible values. The class definition is named to permit its use, and declarations for its
parameters precede it. The example found in the previous section illustrates this trans-
formation. Compare the original, untemplated classes in Example A-1 with the tem-
plated class in Example A-2. Note the notation for the template class paranbeiars.

plate <typename T> precedeghe class definition. The keywotgpename
indicates the template parameter is a typas the template parameter's name. (We
could have used any other identifier suchpaarElementType or foo .) Note

that usingclass is equivalent to usintypename sotemplate <class T>

is equivalent tdemplate <typename T> . While declaring a template class re-
quires prefix notation, using a templated class requires postfix notation. The class’s name
precedes angle brackets (<>) surrounding specific values, i.e., types, for its parameters.
As we showed abovggair<int> instantiates the template claspair with int

for its type parametef.

149

Appendix A. DANGER: Programming with Templates

In template programming, nested type names store compile-time data that can be used
within template classes. Since compile-time class definitions are analogous to run-time
objects and the latter stores named values, nested type names are values, i.e., types,
stored within class definitions. For example, the template das8y has an nested

type name for the type of its domain:

typedef typename Engine_t::Domain_t Domain_t;

This typedef , i.e., type definition, defines the tyddomain_t as equivalent

to Engine_t::Domain_t . The :: operator selects th®omain_t nested

type from inside theEngine t type. This illustrates how to accegsrray 's
Domain_t when not within Array ’'s scope: Array<Dim, T, Engine-
Tag>::Domain_t . The analogy between object members and nested type names
alludes to its usefulness. Just as run-time object members store information for later use,
nested type names store type information for later use at compile time. Using nested
type names has no impact on the speed of executing programs.

A.3. Template Programming Used to Write
POOMA

The preceding section presented template programming tools needed to read this book
and write programs using the POOMA Toolkit. In this section, we present template pro-
gramming techniques used to implement POOMA. We extend the correspondence be-
tween compile-time template programming constructs and run-time constructs started in
the previous section. Reading this section is not necessary unless you wish to understand
how POOMA is implemented.

In the previous section, we used a correspondence between run-time and compile-time
programming constructs to introduce template programming concepts, which occur at
compile time. See Table A-1. In implementing POOMA, more constructs are used. We
list these in Table A-2.

Table A-2. More Correspondences Between Run-Time and Compile-Time Con-
structs

150

Appendix A. DANGER: Programming with Templates

programming run time compile time

construct

values integers, strings, objects, types, constant integers and
functions, ... enumerations, pointers and

references to objects and
functions, executable code,

operations on values Integral values suppqrt Types may be declared and

-,>,==,.... String valuesused. Constant integral and
supporf] ,==,.... enumeration values can be

combined using, - , >,
==, There are no
permitted operations on
code.
values stored in a collection An object stores values. traKs classcontains
values describing a type.
extracting values from An object’s named values A class’s nested types and

collections are extracted using the classes are extracted using
. operator. the:: operator.
control flow to choose if ,while ,goto,... template class
among operations specializations with pattern
matching

The only compile-time values described in the previous section were types, but any
compile-time constant can also be used. Integral litecd#ist variables, and other
constructs can be used, but the main use is enumerationsnémeratioris a distinct
integral type with named constants. For example Ay declaration declares two
separate enumerations:

template<int Dim, class T, class EngineTag>

class Array

{

public:
typedef Engine<Dim, T, EngineTag> Engine_t;
enum { dimensions = Engine_t::dimensions };
enum { rank = Engine_t::dimensions };

The first enumeration declares the constdimiensions to be equal to the value of

151

Appendix A. DANGER: Programming with Templates

thedimensions within the Array ’'s Engine . The second enumeration declares
the constantank to have the same value. Semantically, both indicate the dimension-
ality of the array’s domain. Enumeration constants have integral values so they may be
used wherever integers can be used. For example,

enum { dimensionPlusRank = dimensions + rank };

could be added to thArray declaration. Declaring an enumeration is a compile-time
construct analogous to assigning an integral value to a variable at run time. Note that an
enumerated constant’s value cannot be changed.

Enumerations are frequently used in template programming because

- an enumeration declares a new type, which ensures it is available at compile time and

. constant integral values, and thus enumerated constants, can be used in all compile-
time expressions and as template arguments.

The use of non-integral constant values such as floating-point numbers at compile time

is restricted.

Other compile-time values include pointers to objects and functions, references to ob-
jects and functions, and executable code. For example, a pointer to a function some-
times is passed to a template function to perform a specific task. Even though executable
code cannot be directly represented in a program, it is a compile-time value which the
compiler uses. A simple example is a class that is created by template instantiation, e.g.,
pair<int> . Conceptually, thént template argument is substituted throughout the
pair template class to produce a class definition. Although neither the programmer
nor the user sees this class definition, it is represented inside the compiler, which can
use and manipulate the code.

Through template programming, the compiler's optimizer can transform complicated
code into much simpler code. In Section 7.3, we describe the complicated template code
used to implement efficiently data-parallel operations. Although the template code is
complicated, the compiler optimization frequently greatly simplifies it to yield simple,
fast loops. We illustrate this with a simple template class:

template <bool complicatedCase>
struct usuallySimpleClass {
usuallySimpleClass() {
if (complicatedCase)
i = do_some_very_complicated_computation();
else

152

Appendix A. DANGER: Programming with Templates

I = 0;
}
int i;
h
TheusuallySimpleClass has one boolean template parame@mplicat-

edCase, which should be true only if the constructor must perform some very com-
plicated, time-expensive computation. When instantiated féthe , the compiler
substitutes this value into the template class definition. Sinc# thgtatement’s condi-
tional is false, the compiler optimizer can eliminate the statement, yielding internal code
similar to

struct usuallySimpleClass<false> {
usuallySimpleClass() {
I = 0;

The optimizer might further simplify the code by inlining the constructor’s assignment.
Because the resulting code is never displayed, the programmer does not know how sim-
plified it is without investigating the resulting assembly code. C++ compilers that trans-
late C++ code into C code may permit inspecting the resulting code. For example, using
the--keep_gen_c command-line option with the KAl C++ compiler creates a file
containing the intermediate code. Unfortunately, reading and understanding the code is
frequently difficult.

Each category of values supports a distinct set of operations. For example, the run-time
category of integer values supports combination usirgnd- and comparison using

> and==. At run time, the category of strings can be compared usiHgand char-

acters can be extracted using subscripts wittheoperator. Compile-time operations

are more limited. Types may be declared and used.siheof operator yields the
number of bytes to represent an object of the specified type. Enumerations, constant
integers,sizeof expressions, and simple arithmetic and comparison operators such
as+ and== can form constant expressions that can be used at compile time. These
values can initialize enumerations and integer constants and be used as template argu-
ments. At compile time, pointers and references to objects and functions can be used as
template arguments, while the category of executable code supports no operations. (The
compiler’s optimizer may simplify it, though.)

153

Appendix A. DANGER: Programming with Templates

At run time, an object can store multiple values, each having its own name. For ex-

ample, apair<int> objectp stores twant s namedeft andright_ . The
operator extracts a named member from an objedeft . At compile time,

a class can store multiple values, each having its own name. These are sometimes

calledtraits classesFor example, implementing data-parallel operations requiring stor-

ing a tree of types. Th&xpressionTraits<BinaryNode<Op, Lefft,

Right>> traits class stores the types of a binary node representing the operation of

Opon left and right children. Its definition

template<class Op, class Left, class Right>
struct ExpressionTraits<BinaryNode<Op, Left, Right>>
{
typedef typename ExpressionTraits<Left>::Type_t Left t;
typedef typename ExpressionTraits<Right>::Type_t Right t;
typedef typename
CombineExpressionTraits<Left t, Right t>::Type_t Type t;
h

consists of a class definition and internal type definitions. This traits class contains three
values, all types and naméeft t ,Right t ,andType t ,representing the type

of the left child, the right child, and the entire node, respectively. Many traits classes,
such as this one, use internal type definitions to store values. No enumerations or con-
stant values occur in this traits class, but other such classes include them. See Section
7.3 for more details regarding the implementation of data-parallel operators.

The example also illustrates using the operator to extract a member

of a traits class. The typeExpressionTraits<Left> contains an
internal type definition of Type t . Using the :: operator extracts it:
ExpressionTraits<Left>::Type t . Enumerations and other values can

also be extracted. For exampldsray<2, int, Brick>::dimensions
yields the dimension of the array’s domain.

Control flow determines which code is used. At run time, control-flow statements such
asif ,while ,andgoto determine which statements to execute. Template program-
ming uses two mechanisms: template class specializations and pattern matching. These
are similar to control flow in functional programming languagese/plate class spe-
cializationis a class definition specific to one or more template arguments. For example,
the implementation for data-parallel operations uses the temflaegiteLeaf .The

default definition works for any template argumdnt

154

Appendix A. DANGER: Programming with Templates

template<class T>
struct CreatelLeaf

{
typedef Scalar<T> Leaf t;

h
The code is different foExpression specializations:

template<class T>
struct CreateLeaf<Expression<T>>

{

typedef typename Expression<T>:.Expression_t Leaf t;

,

The latter code is only used whé&lreateLeaf 'stemplate argumentis dexpres-
sion type.

Pattern matching of template arguments to template parameters determines which tem-
plate code is used. The code associated with the match that is most specific is the one that
is used. For exampl&reatelLeaf<int> uses the first, more general template class
definition because that template argument does not matekpression<T> for

any value ofT. On the other handCreatelLeaf<Expression<int>> uses

the second definition because both the general and the specialized template parameters
match so the more specialized ones are preferred. In this Tasgyalsint . Cre-
ateLeaf<Expression<Expression<int>>> also matches the more spe-
cialized definition withT equalingExpression<int>

Control flow using template specializations and pattern matching is simisawitch
statements. Awitch statement has a condition and one or more pairs of case labels
and associated code. The code associated with the case label whose value matches the
condition is executed. If no case label matches the condition, the default code, if present,

is used. In template programming, instantiating a template, e.g.,

CreatelLeaf<Expression<int>>
serves as the condition. The set of template parameters for the indicated template

class, e.g.CreateLeaf , are analogous to the case labels, and each has an asso-
ciated definition. In our example, the set of template parametersi@ass T>

155

Appendix A. DANGER: Programming with Templates

and<Expression<class T>> . The “best match”, if any, indicates the match-

ing code that will be used. In our example, thelass T> parameter serves as the
default label since it matches any arguments. If no set of template parameters match
(which is impossible for our example) or if more than one set are best matches, the code
is incorrect.

Functions as well as classes may be templated. All the concepts needed to understand
function templates have already been introduced so we illustrate using an example. The
templated functiorfi takes one parameter of any type:

template <typename T>
void f(const T& t) { ... }

A function templatedefines an unbounded set of related functions, all with the same
name. Our example defines functions equivalerfi{t@nst int&) , f(const

bool&) , f(const int*&) , Using a templated class definition with a static
member function, we can define an equivalent function:

template <typename T>
class F {
static void f(const T& t) { ... }

h

Both the templated class and the templated function take the same template arguments,
but the class uses a static member function. Thus, the notation to invoke it is slightly
more verbosel<T>::f(t)

The advantage of a function template is that it can be overloaded, particularly operator
functions. For example, the operator is overloaded to add t#aray s, which require
template parameters to specify:

template <int D1,class T1,class E1,
int D2,class T2,class E2>
/I complicated return type omitted
operator+(const Array<D1,T1,E1> & |,
const Array<D2,T2,E2> & r);

Without using function templates, it would not be possible to write expressions such

asal + a2. Member functions can also be templated. This permits, for example,
overloading of assignment operators defined within templated classes.

156

Appendix A. DANGER: Programming with Templates

Function objects are frequently useful in run-time code. They consist of a function plus
some additional storage and are usually implemented as structures with data members
and a function call operator. Analogous classes can be used at compile time. Using the
transformation introduced in the previous paragraph, we see that any function can be
transformed into a class containing a static member function. Internal type definitions,
enumerations, and static constant values can be added to the class. The static member
function can use these values during its computation. CheateLeaf structure,
introduced above, illustrates this.

template<class T>
struct CreatelLeaf
{
typedef Scalar<T> Leaf t;
inline static Leaf t make(const T& a)
{ return Scalar<T>(a); }

h
Thus,CreatelLeaf<T>::make is a function with a complicated name and having

access to the class member narhedf t . Unlike for function objects, the function’s
name within the class must be given a name.

157

Appendix B. DANGER: Overview of
POOMA Sources

In this chapter, we outline the POOMA source code structure and coding conventions
for those who are interested in reading the code.

B.1. Structure of the Files

The POOMA Toolkit files are divided into directories according to their purposes. See
Table B-1. In that table, directories and files are categorized:

use

introductions to the toolkit, its installation, and its use

user code
source code for POOMA programs. POOMA users can read these programs as
examples how to use the toolkit.

documentation

user-level explanations of how to use the toolkit's features

source code

C++ files implementing the toolkit. In their programs, users may need to refer to
header files. Otherwise, these files are mainly read by developers. Source code sub-
directories are described in Table B-2.

development

used by POOMA developers when writing and preparing toolkit files

installation

used when converting the toolkit source code into an executable library. This pro-
cess can involve architecture- and machine-dependent code.

The src directory, containing source code, contains many files so it is described in the
separate table Table B-2VS subdirectories are scattered throughout the source code.

158

The Concurrent Versions System is a version control system. The subdirectories have

Appendix B. DANGER: Overview of POOMA Sources

files storing the CVS state. Ignore these subdirectories.

Table B-1. Toolkit Directories and Files

directory or file
benchmarks
bin

config

config/arch

config/Shared

configure
docs
docs/manual

examples

ide

lib

LICENSE

makefile

type
user code
development
installation

installation

installation

installation
documentation
documentation

user code

development

installation

use

installation

contents

source code for programs
used to test the toolkit’s
speed

scripts useful for creating
releases

files used to configure the
library

machine- and
compiler-specific
configuration files
machine-independent
configuration and make
files

script used by user to
configure the library

documentation describing
using the toolkit

documentation describing
using the R2.4 toolkit

source code for programs
used to illustrate using the
toolkit

files to support using
integrated development
environments to develop
POOMA

directory where POOMA
library is placed
description of rules for
using the POOMA Toolkit
makefile rules to create the
toolkit

159

Appendix B.

directory or file type

README use

scripts installation
src source code

Not all directories and files
are listed.

DANGER: Overview of POOMA Sources

contents
release notes for various
versions
scripts to install POOMA
and related libraries
toolkit source code. See
Table B-2.

Table B-2. Source Code Directories (Withinsrc)

src subdirectory
arch

Array
Array/tests

CoordinateSystems

Domain
Domain/tests
DynamicArray
DynamicArray/tests
Engine

Engine/tests

contents

files necessary for using specific
architectures or compilers. Some replace
missing header files. Others modify
POOMA files.

declaration and implementation of the
Array container class

programs testing thArray code and
features

Cartesian, cylindrical, and spherical
coordinate system classes useful with
meshes

Domain declarations and
implementations

programs testing thBomain code and
features

declaration and implementation of the
DynamicArray container class
programs testing thBynamicArray
code and features

declarations and implementations of the
Engine classes

programs testing thEngine code and
features

160

src subdirectory
Evaluator

Evaluator/tests
Field

Field/DiffOps
Field/Mesh

Field/Relations

Field/tests
FileTemplates
Functions

I0

I0/tests

Layout

Layout/tests

Particles

Particles/tests

Appendix B. DANGER: Overview of POOMA Sources

contents
classes evaluating expressions quickly.
For example, on&valuator
evaluates data-parallel expressions.
programs testing thEvaluator code
declaration and implementation of the
Field container class
implementation ofField stencils
declarations and implementations of
mesheswhich specify dield’s spatial
extent
declarations and implementations of
relationsamongField s, supporting
automatic computation of field values
programs testing theield code and
features
files illustrating the usual structure of
source code files
unsupported files currently under
development
declarations and implementation of
input-output classes to store containers in
files
programs testing the input-output (10)
code
declarations and implementations of the
Layout classes, which specify the
mappings between processors and
container values
programs testing theayout code and
features
declares and implements the
Particles class, which is not
currently supported
programs testing the unsupported
Particles class code and features

161

Appendix B. DANGER: Overview of POOMA Sources

src subdirectory contents

Partition declares and implemenpgrtitions, which
specify how a container’s domain is split
into patches for distributed computation

Partition/tests programs testing partition code and
features

PETE implements the PETE framework

Pooma header files declaring all user-level classes

Pooma/PETE input files integrating POOMA containers

into the PETE framework for fast
data-parallel expressions

Pooma/tests programs testing simple POOMA
programs

Threads classes integrating Smarts threads into
POOMA

Tiny declarations and implementations of
TinyMatrix , Tensor , and
Vector

Tiny/tests programs testing inyMatrix
Tensor , andVector classes

Tulip interface between POOMA and the
Cheetah messaging library

Tulip/tests programs testing the interface between
POOMA and the Cheetah messaging
library

Utilities declarations and implementations of
classes used throughout the toolkit

Utilities/tests programs testing utility classes

Not all directories and files are listed.

A filename’s suffix indicates its purpose. See Table B-3. Implementations of template
classes are usually stored in header files so the C++ compiler can instantiate the classes.
Sometimes some of the implementation of longer functions is storeckifiles, which

are included by the preprocessor in the corresponding header files. When C++ compilers
and linkers fully support template class compilation, the inclusion will no longer be
necessary.

162

Appendix B. DANGER: Overview of POOMA Sources

Table B-3. Filename Suffixes

filename suffix
Source Code Files

meaning

.C

.Cpp

.cmpl.cpp

.in

.inst.cpp

Compilation and Execution Files

C-language file, usually containing an
entire C program

C++-language file, frequently containing
an entire C++ POOMA program.
Sometimes these illustrate using POOMA
or test the source code. Others contain
long definitions of template class
functions.

C++ class implementation file to be
compiled and included in the POOMA
library. Only non-templated classes occur
in these files.

C++ header file. Some are included
directly in user programs. Others declare
and implement classes, particularly
templated classes. A few are C header
files.

PETE input file

preinstantiations of templated C++
classes.

.a
.mk

.info

Documentation Files

POOMA library

file containing Make rules, typically
included within anothetakefile

log file created when compiling POOMA
source

.dsl

.gif

.html

DSSSL stylesheet used to convert
documentation in DocBook format into
other formats

Graphics Interchange Format file
containing a figure suitable for display via
the WWW

HTML documentation file suitable for
display via the WWW

163

Appendix B. DANGER: Overview of POOMA Sources

filename suffix meaning

.mp MetaPost source code for manual
illustrations.

.pdf Portable Document Format (PDF) file,
usually containing toolkit documentation

.png Portable Network Graphics file suitable
for display via the WWW

.xml eXtended Markup Language (XML) file,

usually containing toolkit documentation

B.2. POOMA Coding Conventions

B.2.1.

B.2.2.

POOMA has been written by several different sets of developers. We describe the coding
conventions generally used throughout the code, but there are, of course, exceptions.
To see the coding conventions in practice, view random files irstleesubdirectory.
Thesrc/FileTemplates subdirectory contains very short files illustrating some of the
coding conventions.

POOMA Namespace

Most implementation functions and classes are placed within B@oma
namespace. Some user-level functions are also within this namespace, e.g.,
Pooma::initialize and Pooma::finalize . This is incompletely
implemented because some C++ compilers did not correctly implement namespaces.

Formatting

Indentation follows the GNU Emacs’s C++ mode guidelines. Most increases in indenta-
tion levels start two characters to the right.

Most brackets, e.g., in function definitions, occur on separate lines. Exceptions are for
very short functions.

There is no space between a function’s name and the left parenthesis starting its param-
eter list.

164

B.2.3.

B.2.4.

Appendix B. DANGER: Overview of POOMA Sources
Preprocessor

B.2.3.1. Comments

Almost all comments beginwithh . /* ... */ comments occasionally occur when
commenting an intraline value.

C files, including header files, exclusively use... */ comments.

B.2.3.2. Preprocessor Symbols

Preprocessor symbols are used only for preprocessor conditional expressions, not
to define constants. Such symbols consist of all capital letters with underscore
symbols separating words. They begin withPDOMA prefix. For example, if
POOMA BOUNDS CHEEptesents a true value, then conditionally included code

to check that indices are within a domain should be included.

Header guards also consist of all capital letters with underscore symbols separating
words. They begin wittPOOMA, continue with names of directories and files, and
end with _H. For example POOMA_UTILITIES_MODELELEMENT _Buards
src/Utilities/ModelElement.h.

B.2.3.3. Preprocessor Macros

Inline functions are preferred over preprocessor macros. The latter do occasionally
occur. Usually their scope is quite limited (sometimes to just one file), and their
purpose is to avoid writing repetitive code. For exampte;/PETE/PETE.h defines
PETE_EMPTY_CONSTRUCTORS(CLASS)the three types of constructors for
classes with parameterless constructors.

The main other use is to define macros that need access to thdLE
and _LINE preprocessor symbols to produce error messages. For example,
CTAssert insrc/Utilities/PAssert.h uses this.

Global Variables

Global variables are avoided whenever possible. Where necessary, their names are the
concatenation of capitalized words such that the first word is not capitalized and a suffix
of _g is appended, e.gveryFewGlobalVariables_g

165

Appendix B. DANGER: Overview of POOMA Sources
B.2.5. Classes

In this section, we describe coding conventions for classes, both templated and not tem-
plated.

In files declaring classes, the comments near the beginning frequently begin with a list-
ing of the classes followed by a high-level explanation of the classes’ public interface.

A longer explanation including implementation details usually precedes the class decla-
ration.

Class names tend to be concatenations of capitalized words without underscores, e.g.,
Field andRefCountedPtr

Most classes are declared usitlgss , notstruct . The latter is frequently used for
implementation and compile-time classes that have only public members.

Template parameters are declared usingdlass keyword, rather than thtype-
name keyword. The latter is used when required by C++ to resolve parsing problems.

Default template parameters are sometimes used.

The order of class members is usually:

public

internal types

Usually end with _t . Name consists of the concatenation of capitalized words
without intervening underscores.

constructors

destructors

member functions

Usually named by the concatenation of capitalized words without intervening
underscores but having an uncapitalized first word.

166

B.2.6.

Appendix B. DANGER: Overview of POOMA Sources
protected

This section is frequently empty. If so, do not list fpeotected tag.

private

This section contains private data members and less frequently private functions. If
this section is empty, do not list thgivate tag.

The order sometimes changes if required to be correct C++ or eases the ordering. Two
different sections are frequently separated by a one-line comment with seventy-six hy-
phens. An explanatory comment usually precedes each member.

Member data is almost always private or protected. Function accessors permit access.

Names of internal types usually are formed by the concatenation of capitalized words
without intervening underscores followed by . Names of member functions are sim-

ilar except the first word is not usually capitalized and they have no suffix. Names of
member data are similar to names of member functions except they endmwith

Most functions are defined directly in the class declaration. Functions with long func-
tion bodies are defined incpp files for templated classes and iampl.cpp files for
untemplated classes.

Functions make liberal use obnst both to modify parameters and member functions.
Templated member functions are permitted.

Overloaded member functions are permitted. Operator overloading is permitted.
Default arguments are permitted.

Many functions are marketthline . This assumes the optimizer can handle a large
number of inlined functions. Even functions defined inside class declarations are marked
inline even though the C++ standard requires them to be inlined if possible even if
not so marked. This is because some optimizers attempt more aggressive inlining for
explicitly marked member functions.

The POOMA inheritance hierarchy is quite shallow, both from the user's and from the
implementation point of view. A majority of the uses of inheritance are to factor out a
common implementation and reduce coding.

Virtual functions are usually avoided because they can execute slowly.

Functions

Class member functions are preferred over global functions when they achieve the same

167

B.2.7.

B.2.8.

B.2.9.

Appendix B. DANGER: Overview of POOMA Sources

purpose. Guidelines for global functions are the same as for class member functions:
A function name is a concatenation of capitalized words without underscores and with
the first word not capitalizednline andconst are aggressively used. Templated
member functions, overloaded member functions, operator overloading, and default ar-
guments are permitted.

Functions return references and constant references when appropriate.

Friends

Friend functions are rare and are usually defined directly within the class of which they
are a friend. Friend class declarations do occur.

Compile-Time Programming

Compile-time structures and static functions occur throughout the code. Most of the
classes arstruct s since they have only public members. The coding conventions
follow those for run-time code. Enumerations are a preferred way to declare integral
constants.

Constants

Enumerations are preferred over declaring constant integers.

Use theconst keyword, not preprocessor definitions, to define constants.

B.2.10. Type Casting

Type casting usually indicates a design flaw so it is rarely used. When it is used, use
static_cast ,dynamic_cast , orreinterpret_cast

B.2.11. Errors and Exceptions

POOMA code uses very few exceptions since not all C++ compilers adequately support
exceptions. Thus, all uses must also have corresponding code not using exceptions. See,
e.g.,POOMA_ EXCEPTION®the code.

168

Appendix C. UML Class Diagrams

In this chapter, we present Unified Modeling Language (UML) class diagrams for sev-
eral POOMA classes. These diagrams are created apthaficationlevel, which in-

dicates the software interface, not its implementation. Figure 4-1 provides a top-level
overview of the relationships between classes. Readers interested in the implementation
are encouraged to read the corresponding source code. More extensive explanations of
these classes appear in the main chapters of this book.

Figure C-1. Explanation of UML Class Diagrams

template caramster T

Classnam=1

Fublic data members, if any, would be listsd here.

m=mb=r function L
-

m=mber function Fublic member functions, if any, are listed hee.

m=mbzr function 3

:
o, dmplemsatat doon Bdls L
‘implemsatat diocn Edle I

Cliss specialization & indicated by
an amow with a large tiangle.

template parsmster T

Jlazznam=2 Termnplate parameters oocur in dashead bowes.

void foojconst X[L-3]&l |Thisclass adds one new public member function.

A iapiementation £11e & Files im plementing the clmss

A dished amow indicates an insmntiated ¢lass.

ClassnameZ<l>|Thisclass’s details are preszntad 2lsewhere,

Figure C-1 illustrates a typical UML class diagram. The diagram has three classes:
Classnamel , Classname?2 , andClassname2<1> . Most classes are repre-
sented by three-part boxes. The top part lists the class’s name. The middle part lists
public data members, if any. Few POOMA classes have public data members so this
section is frequently empty. The bottom part lists public member functions, if any. “Free
parameter types” indicate templated paramefélassname2<1> has only one part,

not three. Its three-part box appears in another diagram, presumably because there is not
enough room in this one. BofBlassnamel andClassname2 have template pa-

169

Appendix C. UML Class Diagrams

rameters, each namdd These occur in dashed boxes at the upper-right corner of the
class boxes. Files implementing a class are listed at the lower, right corner of the class’s
box. These implementation files may be different from the header files to include in
one’s program to use these classes.

Lines connect classes. The solid arrow with large triangular arrowhead indicates that
Classname2 is a subtype ofClassnamel . Since this diagram represents the
specification level, subtyping does not necessarily correspond to C++ type inheritance.
Also, subtype class boxes need only list members not available in the supertype. For this
caseClassname2 has one new member not providedGlassnamel . A dashed

arrow indicates a class formed by a template instantiation. The class name indicates
which template parameters are bound. For exanplassname2<1> instantiates
Classname2 with T equal to 1.

Some of the functions require many, similar function arguments. We introduce regular
expression notation to reduce the length of the function prototype. For example,

void foo(const X[1-3]&)
abbreviates
void foo(const X1&, const X2&, const X3&)

X[1-3] abbreviatesX1, X2, X3. We assume this distributes oveonst &, to
yield C++ code.

These diagrams omit a lot of details. Private and protected data members are not listed.
Compile-time types and values are not listed. No indication is given of the actual imple-
mentation. Some template arguments of parameters have been suppressed.

170

Appendix C. UML Class Diagrams

C.1. Array s

Figure C-2. Relationship BetweenArray and DynamicArray s

dim=nsion D
walue Eyoe T
sngine tag Tag

Array

walue Eyoe T
sngines tag Tag

Dynamichrray<l T, Tag>

BothArray sandDynamicArray s have so many member functions that their class
boxes appear in separate diagrams. Figure C-2 indicate®gr@amicArray s are
subtypes ofArray s. Both have value type and engine tag template parameters but
DynamicArray 's dimension must be one.

Implementation files are located within thec/Array directory.

171

Appendix C. UML Class Diagrams
Figure C-3. Array Diagram

dimension D
walus type T
=engine tag Tag

Array

ArTay ()

ATrTay IATT&Y]

AT Tay lATTI&Y, Domain]

AIIay lconst Domaing)

AITay lconst Domain[l-2]1E)

Array lconst Domain[l-3]g&)

Array lconst Domain[l-4]E)

Array lconst Domain[l-5]&)

Array jconst Domain[l-6]g)

Array jconst Domain[L-T]1E)

Array jconst Domaing, ModelElsment<T=)
Array jconst Domain[l-2]1&,. ModslElsmsnt-
Array jconst Domain[l-3]1&. ModeslEl=me=nt-
Array jconst Domain[l-4]&. Mode=lEl=me=nt-
Array lconst Domain[l-5]&. Mode=lEl=ment-
Array lconst Domain[l-6]&, ModeslElement-
Array lconst Domain[l-T]&, ModslElement-
wold initialize jconst Domaing

AHHAAAHAHA

vwold initislize jconst Domain[L-2]1E&0
wold initislize jconst Domain[L-3]1E&)
vold initislize jconst Domain[l-4]1&)
vold initisalize jconst Domain[L-S]&)
vold initialize jconst Domain[L-6]1E&)
vold initialize jconst Domain[L-T]E)
vold initialize (const Domaing, Mod=lEl=ment <T>)

vold initialize jconst Domain[l-2]1&, ModelEl=ment <T =)
wold initislize jconst Domain[l-3]&, ModelEl=nsnt <T:>)
vold initislize jconst Domain[l-4]1&, ModelEle=ment <T=)
vold initislize jconst Domain[l-5]&, ModelEle=ment <T=)
vold initislize jconst Domain[l-6]1&, ModelElsment <T =)
wold initislize jconst Domain[l-T]E&, ModelElsment <T =)
rend |)] opsratoril |

read |oonst HLE)) operator |) lconst XL1E)

read |oonst X[L-2]1 &) opsrator () lconst X[L-2]&)

read |oconst E[L-3]1&); opesrator () lconst X[L-2]&)

read |oconst E[L-4]1 &) opsrator () lconst X[L-4]1&)

read (const X[L-5] &) operator|) lconst X[L-5]1E)

read (const X[L-6] &) operator () lconst H[L-6]1E)

read [const M[L-T] &l operator |l lconst X[L-T]E)
domain)

shysicalbDomain ()

totalDomaini)

first iint); lastiint)

lemgthiint}

firstsiiy lastsil

l=mgths 1)

size |

Lavout)

sngine|j

ooerator<<] 172

Arrany.h
Primticray.h

Figure C-4. DynamicArray Diagram

DryynamicRrray <1, T, Tag>

Appendix C. UML Class Diagrams

walus type T
sengine tag Tag

Iy namicArran |)

IvnamicArray IDomain

DyvnamicArrey IDomain, ModelElemsnt<T=)
Iy namicAr rey IDVRanicAT Ay)
IynamicArray IDynamicArray,. Domain)

wold initialize jconst Domaing)
wold initislize jconst Domain[Ll-2]&)
wold initislize jconst Domain[l-3]&)
vold initislize jconst Domain[L-4]1E&0
wold initislize jconst Domain[L-S]E&)
wold initislize jconst Domain[L-6]1E&)
vold initisalize jconst Domain[L-T]E)
vold initialize const Domaing, ModslEl=ment <T>)
vold initialize jconst Domain[l-2]1&, ModelEle=ment <T =)
vold initialize jconst Domain[l-3]1&, ModelEl=ment <T =)
vold initialize jconst Domain[l-4]1&, ModelEl=ment <T =)
wold initislize jconst Domain[l-5]&, Mod=lEl=n=nt <T:>)
wold initislize jconst Domain[l-6]&, Mode=lEl=n=nt <T:>)
vold initislize jconst Domain[l-T]E&, ModelEle=ment <T=)
read (j; operatoriliil
resd |const HLE)) operator |) lconst X1E)
read |const X[L-2] &) opsrator () lconst X[L-2]&)
reand |const X[L-3]1 &) opsrator () lconst X[L-3]&)
read |oonst X[L-4] &) opsrator () lconst X[L-4]&)
read |oonst X[L-5] &) ;) opsrator () lconst X[L-5]1&)
resd |oconst E[L-6] &) opesrator () lconst X[L-6]1&)
read [const X[L-T] &l operator|) lconst X[L-TlE)
domain)
shysicalbomain |
totalDomainii
first iimt); lastiint)
lemgthiint}
firstsii; lastsil
l=mgths 1]
Ssize ()
Lavyout ()
=ngine |
ocoerator=< ()
arraty)
arrayallil
create |[CresateSioe|
de st roy IDomaing
destroy ITter, Iter)
el oA cat . h

173

Appendix C. UML Class Diagrams

C.2. Field s, Meshes, and Centering s

A Field has a mesh and a centering. It is implementesgkityField/Field.h.

174

Figure

C-5. Field

Fie=ld

Appendix C. UML Class Diagrams

m=sh M
walues tyoe T
=ngine tyoe E

Fi=ld]

Field jconst X&)
Field jconst Centeringi, const Layouti, const ME)
Fizld |int, const Centering&, const Layoutk, const ME)

Fizld jconst Centeringi, const Layouti&, const XLE,

Field jconst Centering&, const Layoutk)

oconst HIE)

Field |int, const Centeringk, const Layoutk, const MLE, const XI2E)
Pi=ld jconst Fieldii

o i
o i
o id
o id

initialize jconst Centeringk,

canst Layoutk,

const ME)

initiaslize |int, const Centeringk, const Layoutk, const ME)

initialicze jconst Centeringk,
initialize jconst FieldE)

Fis=ldli]

const Enginsg =ngine|)

Engin=& =ngin=|]

const FisldEngines: fie=ldEngine|)
FieldEngineg fieldEngine|)

int mmSubFisldsii

const Centeringk centeringll

oonst

Centering centering limt]

int cent=ringSice|)
int mmbMaterisls|)

oonst

Domain
Domain
Domain
Domsin
Domsin
Domsin

oonst

Domain physicalCsllDomain |
totalCellDomain i)
shysicalbDomainiint)
totalbomnain | iot)
ohysicalDomaini |
totalbomain i
comainii

Mashi m=shil

Layout layout|)
Fisldi opsrator=|const Fieldg)

const
o i
o i
o il
o il
o il
o il

Fislde opsrator= jconst Fis=ldi)
Fisldig operator=s jconst HXEl
Fizldig operator+=|const Xkl
Fisldeg operator-=|const Xkl
Fizlde operator*=|const Xk
Fizlde operator/=|const Xk
Fizlde operatorb=iconst Xk
Fislde aperator|=|canst Xk
Fislde cperatork=|canst Xk
Fislde opsrator=s jconst XE)
Fislde opesrator<<= [const XE)
Fisldi operator::>= oonst XE)
adldRe lation [Felat ionList Ttemt)

removeRelations ()
apolyRelations |)
apolyRelations | bool
setDirky i
clearDirty i)

Fiwld .h

const Layouti)

175

FrinmtFisld . h

Appendix C. UML Class Diagrams
C.2.1. Meshes

A mesh specifies kield s spatial extent. AMlesh class only exists conceptually, but
NoMesh andUniformRectilinearMesh are defined within therc/Field/
Mesh directory.

Figure C-6. Meshes

dimension D

ek

Mesh i

Mesh lconst Leyout &)

Mesh jconst Meshid

M==zh jconst Mashi&, const DomEl
MeshE aoperator=|caonst Mashi)
Mi=shil

Intervale physicalvertexbomainil
Intervalie physicalCesllDomainl])
Intervale totalvertexDomain)
Intervalie totalfellDomain)

o

dimension D

UHak=zh

dim=nsian D
walue tyoe T

‘UTniformPectilin=azll=ch

176

Appendix C. UML Class Diagrams
Figure C-7.NoMesh

dimensicn D

ell=sh

lTa=sh)

o= sh const Layoutk)

lok=sch|const lob=shi)

ToM=shiconst ToM=shik, const Inmt=rvalg)
ToM=shiconst ITobM=shik, const IMocd=&j
Tok=shioconst lol=shi, const FisldEnginsFatchi)
IcM=shiconst M=shi&, const DomE)

o= she operator=s jconst Nodeshi)
Notdi=sh)

Intervali physicalvertexDomaini)
Intervali physicalCellDomain ()
Intzrvalt totallertexDomain ||
Int=rvale totalCellDomain ()

Liztis=h.h

In the following figure, we abbreviatdJniformRectilinearMesh with
“URM".

177

Appendix C. UML Class Diagrams

Figure C-8. UniformRectilinearMesh

dim D
wvalue T

TniformPectiliamarlbl=ch

UniformRectiline=arisshi)

UniformRectilinsariesh const LayoutE])
UniformRectilinsarMeshiconst LayoutiE, const Vectorg, const Vectorg)
UniformRectilinearieshiconst UniformRectilineart=shi)
UniformRectilinsari=sh jconst URME, const Intervali)
UniformBactilinsaridesh const UniformBectilinesari=shi, const INodeg)
UniformRectilinsariesh (const URME, const FisldEnginePatche)
UniformRectilinsearifesch iconst M=shi, const Domil
UniformRectilinsarieshi ocoerator=|const UniformPectilinsarisshij
UniformPectilineari=sh i)

caonst IntervaliE shysicalvertexDomain ()

const Intervalié physicalCsllDomain |l

const IntervalE totalVertexDomain)

const Interval& totalCellDomaini)

const Vectork Soacingsil

const Vectork origini)

canst Vectork cellCantaining lconst Vectork)

const Vectork wvertexPosition lconst Lock)

vold initializeFositions [Enginsk, const Centeringkl

wold initializellarmals (Enginek, oconst Centeringkl

wold initializellarmals (Enginek, const Centeringi, bool)

volid initisliceCcsllvolunss [Enginsg, const Centeringi)

volid initisliceFscsfirssas [Enginsk, oonst Centeringil

wvolid initislize=EdgeLengths (Enginesk, const Cenmteringi)

OnibocrmPsctilinesackis=zh.h

C.2.2.Centering s

A Centering specifies the location of values within a cglanonicalCen-
tering is a helper class returning common centerings. Both are implemented within
thesrc/Field subdirectory.

178

Appendix C. UML Class Diagrams

Figure C-9. Centering Classes

dimension D

Cmntering

Centeringll

Centering |CenteringTyoe]

Centering |CenteringTyos, ContinuityTyoe)
Centering |CenteringTyos, ContinuityTyos,
const OrisntationsE, oconst PFositionsEl
Centering il

const CenteringTyoekocente=ringTyos ()

bool discontimious |

bool continuous|)

caonst OrisntationsE orientations|)

const Positionsk positionsi)

canst Orisntationt orisntation |(int)
canst Positiont sositioniint)

int size|)

vold addivalus (const Ori=nteationi&, const Fositionkl

FieldC st #rdueg. h

dimension D

Canonicall=ate=ring

CanonicalCent=ring i)

CanonicalCente=ringl]

Centering opsrator [) oonst CenteringTyes, ContinuityTyoe)
Centering opsrator |) |oconst CenteringTyes, ContinuityTyoes, int)

FisldCentering.h

C.3. Vector s, TinyMatrix s, Tensor s

In this section, we present UML class diagrams for the mathematical objeWis®f

tor s, TinyMatrix s, andTensor s. All these classes have similar interfaces and
relationships. For exampl¥ector requires &/ectorEngine , which has no pub-

lic interface. The only template specialization\i@ctorEngine<D,T,Full>

TinyMatrix s are similar. Tensors have four different engines, supporting the tensor
specializations oAntisymmetric , Symmetric , andDiagonal

All of the source files are located in tRec/Tiny subdirectory.

179

Appendix C. UML Class Diagrams
Figure C-10.Vector s

dimension D
walus tyoe T
engine tyos E

Veckor

Tectorll

Tector|const Vectorkd

Tectoriconst HE)

Tectorilconst ELE.const EIE)
TVectoriconst ELE,const EIE. const HIED
Tectoriconst XLlE const XI2E const H3E, const X4E)
Tectar ()

Vectorgk operator= |const Vectorkl
Vectork operators (const XE)

canst TE omeratar () 1int)

TE& operator|) int)

const Enginsi =ngins|)

Enginesk =ngin=|]

voild print (OwtE)

“ec=torc L h

dimension D
walue tyoe T
=ngines tyo= E

VectorEagine

i .
Sh TestocBEagins.h . .
dn dim=nsion D

walue tyoe T

VectorBEangine=-<D,T, Full =

TectorEngins |

VectorEngine |const VectorEnginsgl
VectorEngine |const HE)

VectorEngines |const XlE.oconst XIE)
VectorEngins |const XlE.const XIE,oconst X3E)
TvectorEngine [const MlE.oconst X1k, const MIE, const H4E)
VectorEngine]

VectorEnginsk operator= lconst VectorEnginek)
TectorEnginek operators lconst HE)

const TE oopsratar |§iimt]

TE operatori) |imt)

Tector . h

180

Figure C-11.TinyMatrix s

TinyMatrix

Appendix C. UML Class Diagrams

dimension DL
dimension D2
walus type T

zngine tyoe E

Tinydat rim ()

Tinydat rin lconst
Tinydat rin lconst
Tinydat rix lconst
Tinydat rix lconst
Tinydat rix lconst
Tinydat rix lconst
Tinydat rix lconst
Tinyat ris lconst
Tinydat rin lconst
Tinydat rin lconst
TimyMatrini]

Timydatrink]
HlE]

H[L-2] &)
#[L-3] &)
2[L-4] &)
#[L-5] &i
H[L-8] &i
HIL-7] &)
H[L-B] &)
H[L-9] &)

Tinydat ring opsrator=s|const Tinyatring)
Tinydat ringk opsrator=|const XE)

const TE opsrator () lint.int)
TE coerator|) |imt, int)

const Tk opsrator (§iint)

TE coerator|) |intj

const Enginek angine |)

Enginek =ngine|])
void primt (Qutk)

T Aoy bt cdx . h

181

Appendix C. UML Class Diagrams
Figure C-12. TinyMatrixEngine s

dimsnsiaon DL
dim=nsion D2
walue tyoe T
sngin= tyops= E

TinyHatrixBEagine

SN TinytlatrixEngine . h . .
ha m dim=nsion D

wvalue tyoe T

TinylatrixBngine<Dl,DZ; T, Full=-

Timyat rixEngine|)

TimyMat rixEngine |[const TimyMat rixEngine <D, T,Full=k]
TimyHat rixEngine |[const Xk

TimyHat rixEngine |const X[L1-2]1 &)

TimyHat rixEngine |lconst X[L1-3]1 &)

TimyMat rixEngine jconst X[1-4] &)

TimyMat rixEngine jconst X[L1-5]&j

TimyMat rixEngine jconst X[L1-8] &)

TimyHat rizEngine |[const X[1-Tl &)

TimyHat rixEngine |[const X[1-8] &)

TimyMat rixEngine |[const X[1-9] &)

TinyHMatrixEngine |}

TimyMat rixEnginesg operator=s const TinyiatrixEngins=g)
TimyMat rixEnginesk operator= lconst XE)

const TE opsrator | (int, imt)

T opersator|) |int,int] const TE oopsrator () |int)

TE opersator|) jink)

Tinttlatrix.h

182

Appendix C. UML Class Diagrams
Figure C-13.Tensor s andTensorEngine s

dim=nsion D
wvalue type T
engine tyope E

Tensor

Tensor ||

Tensor (const T=nsork)

Tensor lconst HLE)

Tensor lconst E[L-21E)

Tensor jcanst X[L-3]E)

Tensor jconst X[1-4]E)

Tenoor lconst X[L-51E]

Tenoor lconst X[L-G1E]

Tenoor lconst X[1L-TlE)

Tenoor lconst Z[1L-BlE)

Tenoor lconst X[1L-9]1E)

Tansor | |

TensoIs ooerator=s (const Tensork)
TensorIk operator= |const Tensor<D, TL,Tagl:=&)
Tenoork oopsrators (const HEj
const TE opsrator | (ink)

TE operator|] jimtj

const Enginsk engine ||

Enginet angine=|]

vold orimt (QutE)

Tenoor .h
dim D
valus T
TensorBEagine<D, T,Full>
dim D dim D
walus T wvalue T
=ngine E {TeasorBEagine=<D; T, ant isymmekbtcic>
TensorBEangins
dim D
walus T

. - o .
TanzarEagine .h TensorEagin=<D, T, Symmet rics

cdim D
walus T

TeasorBEagine=<D, T, Diagonal>

183

Appendix C. UML Class Diagrams
Figure C-14.Full and Diagonal TensorEngine S

dimension D
wvalus tyoe T

TensorBEangine<D, T,Full>

TensorEngins ||

TensorEngine [const TensorEngins<D, T, Full=>gj
TensorEngine [const TE)

TensorEngine [const XE)

TensorEngine |[const X[L1-4]1 &)

TensorEngine |[const X[L-9] &)

TensorEngine |)

TensorEnginek operator= lconst TensorEnginek|
TensorEnginek operator= lconst HEj

canst TE operstar|) (imt.intd
TE aperator |) int, int) const TE onersatar|l imt)
TE ops=rator |} (Lnt)

Tenzoor. h

dimeansiaon D
wvalue type T

TensorBEangine=«<D,T,Diagonal>

TensorEngins ||

TensorEngine [const TensorEngine<D, T, Symmetric>g)
TensorEngine [const TE)

TenzorEngine jconst XE)

TensorEngine |[const X[L-2]1 &)

TensorEngine |[const X[L-3]1 &)

TensorEngine |[const X[L-4] &)

TensorEngine [const X[L-5]1 &)

TensarEngine |[const X[L1-6]1 &)

TensarEngine |[const X[L1-TIE)

TensorEngines ||

TensorEnginei opsrator=s (const TensorEnginsg)
TensorEngine: opsrators const HE)

const T opsrator|) (int.intd
TE& ope=rator |) int, int) const TE opsratori) link)
TE oosrator |l (int)

Tenzsr.h

184

Appendix C. UML Class Diagrams
Figure C-15.Antisymmetric ~ and Symmetric TensorEngine s

dim=nsicn D
wvalue tyoe T

TeasorBEagin=<D, T, Antisymm=tric>

TensorEngins ||

TensorEngines j[const TensorEngine<D, T,Antisymmestric-g)
TensorEngines j[const TE)

TensorEngines j[const XE)

TensorEngines jconst X[L-3] &)

TensorEngine jconst X[L-6] &)

TensorEngine ||

TensorEnginek operator=|const TensorEnginek|
TensorEnginek operator=|const HEj

const TE opsratar | (int, imk)

TE operator|) (int,int) const TE operator () |int)
TE operator|) int)

Tenzor . h

dimension D
wvalus tyoe T

TeasorBEagin=<D, T, Symmektric>

TensorEngins ||

TensorEngine j[const TensorBEngine<D, T, Symmetric=k)
TensorEngines j[const TE)

TensorEngline jconst Xkl

TensorEngines jconst X[L-3] &)

TensorEngine jconst X[L-6] &)

TensorEngine ||

TensorEnginek operator=|const TensorEnginek|
TensorEnginsek opsrator=|const HE)

const TE opsratar | (int, imk)

TE operator|) (int,int) const TE operator () |int)
TE operator|) int)

Tenzore W h

C.4. Domains

Domain s and its subtypes are shown in Figure C-16. All classes are instantiated from
or subtypes oDomain. As mentioned in Section 5.3, thigomain<l1> template in-
stantiation has additional member functions. It useddbenain<1>::iterator

185

Appendix C. UML Class Diagrams

The fourDomain subtypes appear in the bottom half of the figure. Each requires the
same template parameter@emain . Each of these has a template instantiation for the
one-dimensional case. We omit listing their additional member functions since these are
the same as fdDomain<l1> .

Implementation files are located within thec/Domain directory.

Figure C-16.Domains

dim D
Dioenaan Domain<l = Domain<l>: it =rator
b
long size= () lang le=ngth i) op=ratart |)
bool =zt i) imt first () operatort+d]
Domain< L= imt last i} operator-=||
operatar[] (imt dim) :|..r.r|: minll Doran ST tecat o
£y inmt max|)
¢ 4 Domain.h))
' DomadnBa=e h Domain<l=>::iter-
ComalnTrait=z. h ator qu].l’] i
Domain<l=::-iter-
ator =nd|)
dim D dim D cdim D dim D
Loc Ink=rval Bang= EHrad
-‘. Le==.h -‘l Interval.h -‘- Raxgs .h .‘. GErid.h
DemalnTralt = Les= h DomainTrealt=. Ik srval . h DomanlnTrailt = Ranges. h Oz A=
Trait=.Grid. . h
Loc< 1> Inte=rwvalcl=> Bang=<l> EHrid<l>

C.5. Engine s

Engine s and its subtypes are shown in Figure C-17. Five subtyp&ngine s are

shown. Details appear in subsequent diagrams Bfigine class box shows no mem-

bers because it has no members. Only subtypes have members. More explanation of
these classes can be found in Chapter 6. The implementation files in Figure C-18 use the
[1-7] regular expression to indicate 1, 2, ..., or 7.

186

Appendix C. UML Class Diagrams

Implementation files are located within thec/Engine directory.

Figure C-17.Engine s

dim D
walus tyoe T
sngines tag Tag

Engine

dim D Eogine 1k
values tyoe T

Engine«<D,T,Brick>}

dim D
wvalus tyoe T

Engine<D, T, lompressibleBrick:™>

walus type T

Bagine<l,T,Dynamice

dim D

valus type T
lavyout tag LT
opatch tag PT

Engine<D,T,Fhalt iPat ch<LT,PT> =

dim D
walu= typs T
s=ngine tag Tag
Engine<D, T, Pemote<Tag> =
A
walus type T

BEagine<]l, T, Remote<Dynamic> =

187

Appendix C. UML Class Diagrams
Figure C-18.Brick and CompressibleBrick Engine S

dim D
walus tyoe T

Engine«<D, T,Brick>

Engin=]

Engins [Domaing

Engins |[Domain T

Engins [Layout)

Engin= |[Engine)

read [Loc)

read [int ...

ooerator|] [Loc)

operator|) limt ...

cdomain i)

Lot ()
Br dcicEng dne .h
Br i Brg e . CpE
EriccEsgdns . [1-T].inst .cpp
BricaBaze. h

BricaBazs.cpp
BricaBaze[l=T].copl .cpp

dim b
walue tyoe T

Bangine«<D, T, Compressibl=Brick>

Engin=|]

Engins [Domaing
Engins IDomain, T)
Engins [Layout |
Engins [Engine=|
read [Loc)

read jint .. L
cperator || (Lo
ooeratar |) line ...
deomain ()

Lerpout ()

Compress ibl #Bric . h
Compress ibl sBloci . h
Compressedf cactdon. h

188

Appendix C. UML Class Diagrams
Figure C-19.Dynamic and MultiPatch Engine s

walus type= T

Engine<l,T,ynamic>

Engine=|]
Engines | Domain)
Engine |Domain, T
Engins | Layout |
Engines |Engine)
read | Lioc)

readd 1ot ...)
coerator|j (Loc)
cosrator() lint ...}
cdomsinl

Lavout i

craste (CrestaSize t)
cde st roy |IDomaing
destroy |Iter, Iter)

Orynice AcE g Loe . h
Orynien =B g Ane .CRR

dim D

wvalue tyoe T
layout tag LT
match tag PT

Engine<D,T,FaltiPatch<LT,FT> =

Engine=|]

Engine |Layout)
Engine= |Engine]

read | Loc)

read Iint ...
cosrator | ([Loc)
cosrator () |int ...
domainil
inpnerDomainil
Layant (]

Hult iFatchEsg das.h

189

Appendix C. UML Class Diagrams
Figure C-20.Remote Engine s

dim D
wvalus tyoe T
=ngine tag Tag

Eangine«<D, T, Remot=<Tag> =

Engine=|]

Engines [Domain
Engine [Domain, T
Engine [Leryout)
Engine [Engine=)
read | Loc)

readiint ...
coerator || [Lac)
cosratar |} (int ...
comain ()

RsactesErgine .h

walus type T

Eangine<l; T, RBemote<Dynamice =

Engine=|]

Engins |[Domain)
Engine |Domain, T
Engin= |Layout)
Engin= |Engine)

read |Loc)

read (int ...)
coperatar |l ILac)
ocosratar |l int ...
cdomainil

create |[CresteSice t)
de st roy |IDomaing
destroy ITter, Iter)

Femot a0y nanicEsg does h

C.6. Distributed Computation

In this section, we present UML class diagrams for the classes used when declaring
distributed computation. We use abbreviations in parameter lists:

190

Table C-1. Abbreviations

Appendix C. UML Class Diagrams

abbreviation meaning

CM ContextMapper

DT DistributedTag

GL GuardLayers

lv Interval

List_t std::vector of pointers toNodes
of Domains

PatchList_t std::vector of
Interval<Dim> s

RT ReplicatedTag

SpTiLa SparseTileLayout

Partitions specify how a domain will be split into patches, or pieces. Figure C-21 intro-
duces the abstract “Partition” class. The class exists only conceptually, not appearing in
any source code. Instead four classes, appearing in subsequent diagrams, realize it. Even
though users rarely use any of their member functions, the diagrams list them. All files
are relative to therc/Partition subdirectory.

191

Appendix C. UML Class Diagrams
Figure C-21. Partitions

dim D

Partitionii

Fartition|const Fartitionk)

Partitiaon)

Fartitiong operators |oconst Fartitiongl
int maxsSize=|(]

bool hasGuardsi)

bool hasIntermalSuards|)

bool hasExternalGuards|)

const Guardhayerse internalGuards ()
const Guardhayersk sxternalGuards i

int partition |const Demk, List t&, const ContextMaoperk|
int martition lconst DomE, List £E)

HridPartiticn

Fe= fLayout

ZpatialPartitiocn

dim D

Til=Partiticn

dim D
TniformE3ridPartition |

192

Appendix C. UML Class Diagrams
Figure C-22. Grid Partitions

dridPartit ion

GricdPartitian ()

GridPartition jconst Gride)

GridPartition jconst Gridé, const GuardLayersid

GridPartition jconst Gridé, const GuardLhayersk, const GuardLayesrsi)
GridPartition jconst Lock)

GridPartition jconst Lock, oonst GuardLayersil

GridPartition jconst Lock, const Guardlaye=rsE, oconst GuardLheyersk)
GridPartiticon jconst GricdPartitionk

SridPartiticon jconst UniformEricdPartitionk)

GricPartiticonil

GridPartitiong opsrator=|canst GridPartitiong]

const Lock blecksi)

bool hasCustomEdgeGuards|)

const Gride grid i)

volid primt (QutE)

GridPactit dom . h

cdim D

Tniform3ridPartitiaon

UniformaridPartition|]

UniformaridPartition lconst GLE]

Uniform3ridPartition const Lock)

Uniform3ridPartition const Lock, const GLE)
Uniform3ridPartition jconst Lock, const GLE, const GLE)
Uniform3ridPartition jconst UniformEridPartitiong|
Uniforn3ridPartitionli]

UniformdridPartitionk operator= (const UniformSridPartitionk)
const Lock blecksi)

Dandbcrmar ddFact dtdcn. h

193

Appendix C. UML Class Diagrams
Figure C-23. Other Partitions

REefLeayout
SpatialPartition

SoatialPartition|const RefLeyout k)
SoatialPartitioniconst SoatialPartitionk)
SoatiamlPartition)

SpatialPartitiong opesrator= jconst SpatialPartitiong)
Loc<l> blocksi

int context|)

bool hastustomEdgeGuards ()

const RefLayouti refersnce|)

wold print |OutE)

SpatialPart ition. h

Til=Partitiocn

TilePartitionii

TilePartiticniconst PatchList tEj

TilePartitioniconst PatchList t&, const GL<Dim=E]
TileFPartitioniconst PatchList t&, const GL<Dim>E&, oconst GLEDim>E)
TilePartitioniconst Til=FPartitiong)

TilePartitiaon|]

TilePartitiong opsrator=s |oconst TilsPartitiong]

PatchList £ tileListi)

bool hastustomEdgeGuards ()

wold print [OubE)

TilsFart iticen h

Guard layers surround domains and patches to ease programming and decrease commu-
nication. We list more member functions than most users require. All files are relative to
thesrc/Layout subdirectory.

194

Appendix C. UML Class Diagrams
Figure C-24. Guard Layers

dim D
Guard Layesrs

GuardLeayers ()

GuardLeayers |[int)

GuardLeyers |int, int)

GuardLayers jconst Lock, const LocEd
wold initialize|const Lock, const Lock]
wold initialice|oconst Guardhayersil

imt lowsriint)

ipt upper iint)

imtE lowsriint)

int& upoeriint|

bool opsrator==|const Guardhayersk)
bonl omeratar==|int]
bonl omerator!=|const GuardLayersk)
bool ocpsrator!=|int]

GuardLeayers operator- lconst GuardLeyer skl

GuardLeyers opsrator- |int)

static void addiuardiayers IIntervali, const GuardLayersk)
Interval addivardiayesrsTobDomain jlconst Intervalg)

wold print |OstresmE)

Gunacdlavecz.h

A layout maps a domain index to processors and memory used to compute the associated
value. There is no base class so we just present the class diagrams. We list only member
functions related to construction, destruction, and printing since those are the functions
that almost all users use. All files are relative to ¢ve /Layout subdirectory.

Figure C-25. DomainLayout

dim D
Domainla youk

DomainLayout |)

DomainLayout [const Inberval k)

DomainLayout lconst Intervalk, const GLE]D

Doma inLeayout const Intervalk const Node<Interval=Ek)
Doma LnLayout const Domalnlayouts)

Doma inLayout |

wold initiaslize jconst Intesrvalk)

vold initialize jconst Imterveali&, const GLE)

void initialize [const Domainbeyout &)

Oomailnlaont h

195

Appendix C. UML Class Diagrams
Figure C-26. DynamicLayout

Lrrnami ol ok

Iry nemicLenyont 1)

IynemicLeayout lconst Interval <l =gl

IynemicLayout lconst Interval<l=&, int)

IynemicLayout lcanst Grid-l=g)

IynemicLayout const Interval<l=&, const Partitionsrk)
IynemicLayout iconst Interval<l=&, const Partitionsrk, const CHL>E)
IynsmicLayont lconst IpnsmicLeyout k)

IynsmicLayont & operator= |const DIynamicLayoutk]
DynanicLayout |

wold initialize jconst Interval<l=Ej

vold initialize (const Interval<l>&, oconst Grid<l=g]
wold initialize jconst Grid<l=k)

vwold initialize jconst Int=rval<lr&, const Partitionsril
wold initislize jconst Inmterval<l:g&, const Partition=r&, const CH=L=&)
wold initislize= jconst Inmterval<l:=g, const List tEi

wold print IOstreank)

OymaoudcLavemt h

196

Appendix C. UML Class Diagrams
Figure C-27.GridLayout

dim D
EHridLayaout

Gridieryaut ()

Gridisyout lconst Intervali, oconst DTE)

Gridisyowut (const Intervalg, oconst GLE. const DTE)

Gridiueyowut lconst Intervalig, oconst Lock, const DTE)

Gridisyout lconst Intervalg, oconst Lock, const GLE, oonst DTE)
Gridieyout lconst Ivg, const Lock, const GLE, const GLE. const DTE)
aGridbheayout lconst Intervali, const Partitionerk, const DTE)
aridbheayout lconst Gride, const DTE)

Gridbheayout lconst Gridé, const GLE, const DTE)

Gridisyot const Gridi, const GLE, const GLE, oconst DTE]D
Gridisyout lcanst Intervalk, oconst RTED

Gridisyowut const Intervalg, oconst GLE. const RTE)

Gridisyout (const Intervalg, oconst Lock, const FTE)

Gridiusyowut (const Intervali, oconst Lock, const GLE, oonst RTE)
Gridiueyout (const Ivg, const Lock, const GLE, const GLE. oconst RTE)
Gridisyowut lconst Intervalg, oconst Partitioner&, oconst RTE)
aridbheayout lconst Gride, const RETE)

aridbheayout lconst Grideé, const GLE, const FETE)

dGridbheayout lconst Gridé, const GLE, const GLE, const RTE)
Gridbheayout lconst Intervali, const Partitionerk, const ContextiMazoerk)
Gridisyout const Gridhayout k)

Gridisyout & operator=s |const GridLayout &)

GridLayout (]

vold initialize jconst Intervali&, oconst DTE)

vold initialize jconst Interveli&, oconst GLE, const DTE)

vwold initialize jconst Int=rvali&, oconst Lock, const DTED

vold initialize jconst Inte=rvali, oconst Lock, const GLE. oconst DTE]
wold initislize jconst IvE.const Lock,const GLE,const GLE.const DTE)
vold initislize jconst Intervali, oconst Partitioneri, const DTED
vold initislize jconst Sridié, const DTED

wold initislize (const Sride, const GLE, const DTE)

wold initialize (const Sride, const GLE, const GLE, oconst DTE)
vold initialize jconst Intesrvali&, const RTE)

vold initialize jconst Intervali&, oconst GLE, const RTED

vold initialize jconst Inte=rvali&, oconst Lock, const FTED

vold initialize jconst Inte=rvali, oconst Lock, const GLE. oconst RTED
vold initialize jconst IvE.const Lock.const GLE,.const GLE.const FTE)D
wold initislize jconst Intervals, const Partitioner&, const RETE)
wold initislize jconst Grids, const BTE)

vold initialize jconst Sridé, const GLE, const ETED

wold initialize (const Sride, const GLE, const GLE, const RTE)D
wold initislize jconst Intervalié, oconst Partitionsrk, const CHED
vold initialize jconst IvwE.const List tE&, const Lock.bool,bool.
oconst GLE. const GLE)

void print [Ostreamnk)

Gridhayvont . h

197

Appendix C. UML Class Diagrams

Figure C-28. UniformGridLayout

UniformErid Layouk

dim D

Uniformaridiayaut |

Uniform3ridiayout |const Intervali, const OTE)

niformaridiayout |const Intervali, const GLE, oconst DTED
nifomdridiayout |const Intervali, const Lock, const DTE]
niformdridiayout |const Intervali, const Lock, const GLE, oconst DTE)
tniformGridiayout |const IvE, const Lock,const GLE,const GLE,const DTE)
UniformGridiayout |const Int=ivalik, const ETE)

uniform3ridiayout const Intervali, const GLE, const RTE)
uniform3ridiayowut const Intervali:, const Lock, const FTE)
Uniform3ridiayout const Intervali, const Lock, const GLE, const RTE)
niformaridiayout |const Ive, const Lock,const GLE.const GLE,canst RTE)
niform3ridiayout |const Intervali, const Partitionerk, const OHME)
niformdridiayout |const Intervali, const PartitionsrE, const DTE)
niformaridiayout |const Intervali, const Partitionsri, const RETE)
niformdridiayout |const Uni formGr idLeryout &)

niformdridiayout & operator= jconst UniformEridiayoutE)

UniformGr idLeyout 1)

wold initislize jconst Interval&, const DTE)

wold initislize jconst Inmtervals, const GLE, const DTE)

vwold initislize jconst Intervali&, oonst Lock, const DTED

vold initislize jconst Intervali, oonst Lock, const GLE. const DTED
wold initialize ([const IvwE.const Lock,.const GLE,const GLE.const DTE)D
vold initialize jconst Intesrvali&, const RTE)

vold initialize jconst Intesrvaeli&, const GLE, const RTE)

vold initialize jconst Inte=rvali&, oconst Lock, const FTED

vold initialize jconst Intervali&, oconst Lock, const GLE. const RTED
vold initialize jconst IvE.const Lock.const GLE,.const GLE.const FTE)D
vold initialize jconst Inte=rvali, const Partitionsrk, const CHE)
wold initislize jconst Intervals, const Partitioner&, const DTE)
vold initislize jconst Intervali, oconst Partitionerk, const RETED
wold initialize jconst Uniform3ridLayoutk)

wold initislize jconst IvwE.const List tE&, const Lock.bool.bool.

const GLE, const GLE)

void motifviIntervalk,

void print [Ostreamnk)

const ObssarverEventi)

Ond Bocwidc ddhanssat Wh

198

Appendix C. UML Class Diagrams
Figure C-29. SparseTileLayout

dim D

SparseaTile Layout

SoarseTilelayout ()

SoarseTilelayout const Intervali)

SparseTileleayout (const Interval&, oconst GLE)

SparseTilelLeayout lconst Interval&, oonst GLE, const GLE)
SparseTileLayout IIntervali, const PatchList t&, const RTE)
SparseTileLeayout [const Ive, const GLE, oonst PatchList t&: oconst RTE)
SpTlLla lconst IwEk, const GLE, oonst GLE. const PatchList t&, const ETE)
SparseTileLayout (const Interval&, const Partitionerk, const ETE)
SparseTileLayout |Intervals, const PatchList tik, const DTE)
SparseTileLayout (const IvE, const GLE, oconst PatchList t&, const DTE)
S5oTlLa iconst Ivwk, caonst GLE, const GLE. const PatchList t&, const DTE)
SoarseTilelayout const Intearvali, const Partitionerk, oconst DTE)
SparseTilelayout (const Intervali, oconst Partitionsrg, oconst CHE)
SparseTilelLeayout [const SparseTileLayout &)

SparseTileLayout & operator=s|const SparseTilsLayoutk)

SoarseTileLayout |)

vold initisalize|const Intervali)

wold initislize|const Intervals, const GLE)

vold initislize|const Intervals, const GLE, const PatchList tE)

vold initismlize|const Intervali, const Partitionsril
EBorderFillIterastor t beginBorderPillList ||

BorderPFillIteratar £ encdBordarFillLise)

wold notify IIntervalik, const ObserverBvent k)

volid print (OStresmE)

Spar=#TilsLavowt . h

Context mappers map domain patches to contexts. Effectively, they map pieces of a
domain to processors. Even though users rarely use any of their member functions, the
diagrams list them. The tydeist t abbreviates astd::vector of pointers to
Nodes of Domains. GL abbreviates<GuardLayers . All files are relative to the
src/Partition subdirectory.

199

Appendix C. UML Class Diagrams
Figure C-30. Relationships Among Context Mappers

dim D
Loca 1Mapp=r
dim D
dim D ‘Distributedtapp=r
Contextiappe=r
. dim b
<.
T Contiguousktlagp=r
Cont extMaooer ||
vold setaffinity jconst List tE)
dim D

Cizet sact Happer _h
Bisect ionMagpp=1

Lol
TUniformilappe=r

200

Appendix C. UML Class Diagrams
Figure C-31. Context Mappers

dim D
Loca lMappe=r

LocalMsaoper |]
LocalMapoer const Partitionsri)
wold mep lconst List tE)

Conrt sat Happs . h

dim D
Dizt ributedilapper

Distributediasoper (const Partitionszk)
wold men lconst List tE)

Oiztributes diappesc.h

dim D

Cont iguoustHappe=r

Contiguouskapper ([const Fartitionsrgl
Contiguouskapper j[const Fartitionsr&, const LocE)
wold mep lconst List tE)

Comt dquenstlappesr Jh

dim D

Bisectionbappe=x

Eisectiondaooesr (const Lock)

Eisectiondapoer (const Partitionerk)
Eisectiondapper (const Partitioner&, const Lock|
wold men lconst List tE)

Bizscticntiappec. h

Uni formilapp=z

Uniformiapoer lconst Loco<l=E)
Uniformdimspoer ([const Fartitionsrgl
Uniformdsooer |int)
uniformidsoper|)

wold mepn lconst List tEj

O i bo cablapp #c . h

201

Glossary

A

architecture

particular hardware (processor) interface. Examples architectures include “linux”,
“sgin32”, “sgi64”, and “sun”.

Array

a POOMA container generalizing C arrays and mapping indices to values.
Constant-time access to values is supported, ignoring the time to compute the
values if applicable Array s are first-class objectDynamicArray s and

Field s generalizéArray .

See Alsocontainey DynamicArray , Field

Brick Engine

cell

anEngine explicitly storing each of its values. Its space requirements are at least
the size of thdengine ’'s domain.

See Alsoengine.

a domain element of kield . Both Array andField domain elements are
denoted by indices, but a cell exists in space. For example, it might be a rectangle
or rectangular parallelepiped.

See Alsocell size Field , mesh.

202

Glossary

cell size

specifies &ield cell's dimensions e.g., its width, height, and deptHth This
is frequently used to specify a mesh.

See Alsocell, mesh corner position.

communication library
software library passing information amoogntextsusually using messages.
See Alsodistributed computing environment.

compilation time

See:compile time

compile time

in the process from writing a program to executing it, the time when the program
is compiled by a compiler. This is also calledmpilation time

See Alsoprogramming timerun time.

computing environment

computer. More precisely, a computer with its arrangement of processors and asso-
ciated memory, possibly shared among processors.

See Alsosequential computing environmedistributed computing environment.
conformable containers

containers with conformable domains.

See Alsoconformable domainslata parallel.

conformable domains

domains with the “same shape” so that corresponding dimensions have the same
number of elements. Scalars, deemed conformable with any domain, get “ex-

panded” to the domain’s shape. Assignment can operate on containers with con-
formable domains.

See Alsoconformable containerdgata parallel.

203

Glossary

container

an object that stores other objects, controlling their allocation, deallocation, and ac-
cess. Similar to C++ containers, the most important POOMA containerrare
ray s andField s.

See Also:Array , DynamicArray , Field , Tensor , TinyMatrix
Vector

container value

object stored within a container and usually addressable via an index. Synonyms
include “element” and “value”.

context

a collection of shared memory and processors that can execute a program or a por-
tion of a program. It can have one or more processors, but all these processors must
access the same shared memory. Usually the computer and its operating system,
not the programmer, determine the available contexts.

See Alsodistributed computing environmertayout.

context mapper

indicates how a container’s patches are mapped to processors and shared memory.
Two common choices are distribution among the various processors and replica-
tion.

See Alsocontext patch.

corner position

specifies thér® point corresponding to Rield domain’s lower, left corner.

See Alsomesh cell size.

data parallel

describes an expression involving a (non-singleton) subset of a container’s values.

204

Glossary

For examplesin(C) is an expression indicating that te# is applied to each
value in container C.

See Alsoelement wiserelation stencil.

distributed computing environment

computing environment with one or more processors each having associated mem-
ory, possibly shared. In some contexts, it refers to strictly multiprocessor computa-
tion.

See Alsocomputing environmensequential computing environment.

domain
a set of points on which a container can define values. For example, a set of discrete
integral n-tuples in n-dimensional space frequently serve as container domains.

See Alsocontainerinterval stride range.

domain triplet notation

notation pegin :end:stride]representing the mathematical set {begin, begin

+ stride, begin + 2stride, ..., enddnd is in the set only if it equalbegin plus
some integral multiple oétride . This notation can abbreviate many domains.

It is extended to multiple dimensions by separating the dimensions’ sets with com-
mas: pegin0 :end0:stride0 ,beginl :endl:stridel .

See Alsodomain.

DynamicArray

a POOMA container generalizing one-dimensiofglay s by supporting domain
resizing at run-time. It maps indices to values in constant time, ignoring the time to
compute the values if applicablBynamicArray s are first-class objects.

See AlsocontainerArray , Field

element

See:container value

205

Glossary
element wise
describes accesses to individual values within a container. For exdd{pfg 3)
represents one particular value in the container C.

See Alsodata parallelrelation stencil.
engine

stores or computes a container’s values. These can be specialized, e.g., to mini-
mize storage when a domain has few distinct values. Separating a container and its
storage also permits views of a container.

See AlsoBrick Engine , containerview of a container.

enumeration

C++ integral type with named constants. These are frequently used in template
programming because they can be used as template arguments.

execution time

Seerun time

external guard layer

guard layer surrounding a container’s domain used to ease computation along the
domain’s edges by permitting the same computations as for more internal compu-
tations. It is an optimization, not required for program correctness.

See Alsoguard layerinternal guard layempatch.

Field

a POOMA container representing &aray with spatial extent. It also supports
multiple values and multiple materials having the same index. It maps indices to
values in constant time, ignoring the time to compute the values if applicable. It
also supports geometric computations such as the distance between two cells and
normals to a cellField s are first-class objects.

See Alsocontainercell, mesh Array , DynamicArray

206

Glossary

first-class type

a type of object with all the capabilities of the built-in type having the most capabil-
ities. For examplegchar andint are first-class types in C++ because they may be
declared anywhere, stored in automatic variables, accessed anywhere, copied, and
passed by both value and reference. POORMay andField are first-class

types.

function object

object that can behave as a function. The object can store values that the function
uses. If its function is calledperator() , the object can be invoked as a func-
tion.

function template

a definition of an unbounded set of related functions, all having the same name but
whose types can depend on template parameters. They are particularly useful when
overloading operator functions to accept parameters that themselves depend on
templates.

guard layer

domain surrounding each patch of a container’s domain. It contains read-only val-
ues. External guard layers ease programming, while internal guard layers per-
mit each patch’s computation to be occur without copying values from adjacent
patches. They are optimizations, not required for program correctness.

See Alsoexternal guard layeinternal guard layetpartition, patch domain.

207

Glossary

index
a position in a domain usually denoted by an ordered tuple. More than one index
are called indices.

See Alsodomain.

instantiation

Seeitemplate instantiation
indices

More than one index.

See Alsoindex.

internal guard layer

guard layer containing copies of adjacent patches’ values. These copies can per-
mit an individual patch’s computation to occur without asking adjacent patches for
values. This can speed computation but are not required for program correctness.

See Alsoguard layerexternal guard layepatch.

interval

a set of integral points between two endpoints. This domain is frequently repre-
sented using mathematical interval notation [a,b] even though it contains only the
integral points, e.g., a, at1,a+2, ..., b. Itis also generalized to an n-dimensional in-
terval as the direct product of one-dimensional intervals. Many containers’ domains
consist of these sets of ordered tuples.

See Alsodomain stride range.

layout

a map from an index to processor(s) and memory used to compute the container’s
associated value. For a uniprocessor implementation, a container’s layout always
consists of its domain, the processor, and its memory. For a multiprocessor imple-

208

Glossary

mentation, the layout maps portions of the domain to (possibly different) processors
and memory.

See Alsocontainerdomain.

matrix
See:TinyMatrix

mesh

aField 's map from indices to geometric values such as cell size, edge length,
and cell normals. In other words, it specifiebigld s “spatial extent”.

See AlsoField , cell, cell size corner positionlayout.

operator function

function defining a function invoked using a C++ operator. For examplegjthe
erator+ function defines the result of using the

partition

a specification how to divide a container’s domain into patches for distributed com-
putation. It can be independent of the domain’s size. For example, it divide each

domain into halves, yielding a total of eight patches in three dimensions. See Fig-
ure 3-4 for an illustration.

See Alsoguard layerpatch domain.

209

Glossary
patch
subset of a container's domain with values computed by a particular context. A

partition splits a domain into patches. It may be surrounded by external and internal
guard layers.

See Alsopartition guard layerdomain.
point

a location in multidimensional spa®®. In contrast, indices specify positions in
container domains.

See AlsoField , meshindex.
programming time

in the process from writing a program to executing it, the time when the program
is being written by a programmer.

See Alsocompile time run time.

range

a set of integral points between two endpoints and separated by a stride. This do-
main, frequently represented by domain triplets [b:e:s], can also be represented

mathematically as an integral interval [b,e] with stride s, i.e., {a, ats, a+2s, ..., b}.
Itis generalized to an n-dimensional range as the direct product of one-dimensional
ranges.

See Alsostride interval domain.

reference semantics

a copy of an objeco refers to the objeco such that changing either one also
changes the other. This is the opposite of value semantics.

relation

dependence between a dependent container and one or more independent contain-

210

Glossary

ers and an associated function. If a dependent container’s values are needed and
one or more of the independent containers’ values have changed, the dependent
container’s values are computed using the function and the independent contain-
ers’ values. Relations implement “lazy evaluation”.

See Alsodata parallelelement wisgestencil.

run time

in the process from writing a program to executing it, the time when the program
is executed. This is also callesecution time

See Alsocompile time programming time.

sequential computing environment

a computing environment with one processor and associated memory. Only one
processor executes a program even if the computer itself has multiple processors.

See Alsocomputing environmentistributed computing environment.

stencil

set of values neighboring a container index and a function using those values to
compute it. For example, the stencil in a two-dimensional Conway game of life
consists of an index’s eight neighbors and a function that sets its value to “live” if
it is already live and it has two neighbors or it has exactly three live neighbors.

See Alsodata parallelelement wiserelation.

stride

spacing between regularly-spaced points in a domain. For example, the set of points
a, at2,a+t4, ..., b-2, bis specified by [a,b] with stride 2. It is a domain.

See Alsorange interval domain.

suite name

an arbitrary string denoting a particular toolkit configuration. For example, the
string “SUNKCC-debug” might indicate a configuration for the Sun™ Solaris op-

211

Glossary

erating system and the KCC C++ compiler with debugging support. By default, the
suite name it is equal to the configuration’s architecture name.

template

class or function definition having template parameters. These parameters’ values
are used at compile time, not run time, so they may include types and other compile-
time values.

See Alsotemplate instantiatignemplate specialization.

template instantiation

applying a template class to template parameter arguments to create a type. For ex-
ample foo<double,3> instantiate¢emplate <typename T, int

n> class foo with the typedouble and the constant integer 3. Template
instantiation is analogous to applying a function to function arguments.

See Alsotemplate.

template specialization
class or function definition for a particular (special) subset of template arguments.
See Alsotemplate.

Tensor

a POOMA container implementing multidimensional mathematical tensors as first-
class objects.

See AlsoTinyMatrix , Vector
TinyMatrix

a POOMA container implementing two-dimensional mathematical matrices as
first-class objects.

See AlsoTTensor , Vector

212

Glossary

trait

a characteristic of a type.

See Alsotraits class.

traits class
a class containing one or more traits all describing a particular type’s characteris-
tics.

See Alsotrait.

Turing complete

describes a language that can compute anything that can be computed. That is, the
language for computation is as powerful as it can be. Most wide-spread program-
ming languages are Turing-complete, including C++, C, and Fortran.

value

See:container value

Vector
a POOMA container implementing multidimensional mathematical vectors, i.e., an
ordered tuple of components, as first-class objects.

See AlsoTensor , TinyMatrix

view of a container

a container derived from another. The view’s domain is a subset of the latter’s,
but, where the domains intersect, accessing a value through the view is the same
as accessing it through the original container. In Fortran 90, these are called array
sections. OnhArray s,DynamicArray s, andField s support views.

See Alsocontainer.

213

	Table of Contents
	List of Tables
	List of Figures
	List of Examples
	Preface
	1. How to Read This Book
	2. Obtaining, Using, and Modifying POOMA
	3. History of POOMA
	4. Acknowledgements

	Chapter 1. Getting Started with POOMA
	1.1. Getting Started for Impatient Users
	1.2. Obtaining POOMA
	1.3. Compiling the POOMA Library
	1.3.1. DANGER: Configuration Options

	1.4. Writing and Compiling POOMA Programs
	1.4.1. DANGER: initialize and finalize

	1.5. Supporting Distributed Computation
	1.5.1. Obtaining and Installing the MM Shared Memory Library
	1.5.2. Obtaining and Installing the Cheetah Messaging Library
	1.5.3. Configuring POOMA When Using Cheetah

	Chapter 2. Introduction
	2.1. POOMA Goals
	2.2. POOMA is OpenSource Software

	Chapter 3. A Tutorial Introduction
	3.1. HandCoded Implementation
	3.2. Elementwise Array Implementation
	3.3. DataParallel Array Implementation
	3.4. Stencil Array Implementation
	3.5. Distributed Array Implementation
	3.6. DataParallel Field Implementation
	3.7. Distributed Field Implementation

	Chapter 4. Overview of POOMA Concepts
	4.1. POOMA Containers
	4.1.1. Choosing a Container
	4.1.2. Declaring Sequential Containers
	4.1.3. Declaring Distributed Containers

	4.2. Computation Modes
	4.3. Computation Environment

	Chapter 5. Array Containers
	5.1. Containers
	5.2. Arrays
	5.3. Domains
	5.3.1. Declaring Domains
	5.3.1.1. Locs
	5.3.1.2. Intervals
	5.3.1.3. Ranges
	5.3.1.4. Grids

	5.3.2. Using Domains

	5.4. Declaring Arrays
	5.5. Using Arrays
	5.6. DynamicArrays

	Chapter 6. Engines
	6.1. The Concept
	6.2. Types of Engines

	Chapter 7. DataParallel Expressions
	7.1. Expressions with More Than One Container Value
	7.2. Using DataParallel Expressions
	7.3. Implementation of DataParallel Statements
	7.3.1. Naïve Implementation
	7.3.2. Portable Expression Template Engine

	Chapter 8. Container Views
	Appendix A. DANGER: Programming with Templates
	A.1. Templates Execute at CompileTime
	A.2. Template Programming for POOMA Users
	A.3. Template Programming Used to Write POOMA

	Appendix B. DANGER: Overview of POOMA Sources
	B.1. Structure of the Files
	B.2. POOMA Coding Conventions
	B.2.1. POOMA Namespace
	B.2.2. Formatting
	B.2.3. Preprocessor
	B.2.3.1. Comments
	B.2.3.2. Preprocessor Symbols
	B.2.3.3. Preprocessor Macros

	B.2.4. Global Variables
	B.2.5. Classes
	B.2.6. Functions
	B.2.7. Friends
	B.2.8. CompileTime Programming
	B.2.9. Constants
	B.2.10. Type Casting
	B.2.11. Errors and Exceptions

	Appendix C. UML Class Diagrams
	C.1. Arrays
	C.2. Fields, Meshes, and Centerings
	C.2.1. Meshes
	C.2.2. Centerings

	C.3. Vectors, TinyMatrixs, Tensors
	C.4. Domains
	C.5. Engines
	C.6. Distributed Computation

	Glossary
	A
	architecture
	Array

	B
	Brick Engine

	C
	cell
	cell size
	communication library
	compilation time
	compile time
	computing environment
	conformable containers
	conformable domains
	container
	container value
	context
	context mapper
	corner position

	D
	data parallel
	distributed computing environment
	domain
	domain triplet notation
	DynamicArray

	E
	element
	element wise
	engine
	enumeration
	execution time
	external guard layer

	F
	Field
	firstclass type
	function object
	function template

	G
	guard layer

	I
	index
	instantiation
	indices
	internal guard layer
	interval

	L
	layout

	M
	matrix
	mesh

	O
	operator function

	P
	partition
	patch
	point
	programming time

	R
	range
	reference semantics
	relation
	run time

	S
	sequential computing environment
	stencil
	stride
	suite name

	T
	template
	template instantiation
	template specialization
	Tensor
	TinyMatrix
	trait
	traits class
	Turing complete

	V
	value
	Vector
	view of a container

